Sleep and circadian rhythms: Evolutionary entanglement and local regulation

Q2 Medicine
James M. Krueger
{"title":"Sleep and circadian rhythms: Evolutionary entanglement and local regulation","authors":"James M. Krueger","doi":"10.1016/j.nbscr.2020.100052","DOIUrl":null,"url":null,"abstract":"<div><p>Circadian rhythms evolved within single cell organisms and serve to regulate rest-activity cycles in most single-cell and multiple-cell organisms. In contrast, sleep is a network emergent property found in animals with a nervous system. Rhythms and sleep are much entangled involving shared regulatory molecules such as adenosine, ATP, cytokines, neurotrophins, and nitric oxide. These molecules are activity-dependent and act locally to initiate regulatory events involved in rhythms, sleep, and plasticity.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2020.100052","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994420300043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 8

Abstract

Circadian rhythms evolved within single cell organisms and serve to regulate rest-activity cycles in most single-cell and multiple-cell organisms. In contrast, sleep is a network emergent property found in animals with a nervous system. Rhythms and sleep are much entangled involving shared regulatory molecules such as adenosine, ATP, cytokines, neurotrophins, and nitric oxide. These molecules are activity-dependent and act locally to initiate regulatory events involved in rhythms, sleep, and plasticity.

睡眠和昼夜节律:进化纠葛和局部调控
昼夜节律在单细胞生物中进化,并在大多数单细胞和多细胞生物中调节休息-活动周期。相反,睡眠是一种网络涌现特性,存在于有神经系统的动物身上。节律和睡眠在很大程度上纠缠在一起,涉及共享的调节分子,如腺苷、ATP、细胞因子、神经营养因子和一氧化氮。这些分子是活动依赖的,并在局部起作用,启动涉及节律、睡眠和可塑性的调节事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Sleep and Circadian Rhythms
Neurobiology of Sleep and Circadian Rhythms Neuroscience-Behavioral Neuroscience
CiteScore
4.50
自引率
0.00%
发文量
9
审稿时长
69 days
期刊介绍: Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信