How Do Cells Adapt? Stories Told in Landscapes.

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED
Luca Agozzino, Gábor Balázsi, Jin Wang, Ken A Dill
{"title":"How Do Cells Adapt? Stories Told in Landscapes.","authors":"Luca Agozzino, Gábor Balázsi, Jin Wang, Ken A Dill","doi":"10.1146/annurev-chembioeng-011720-103410","DOIUrl":null,"url":null,"abstract":"Cells adapt to changing environments. Perturb a cell and it returns to a point of homeostasis. Perturb a population and it evolves toward a fitness peak. We review quantitative models of the forces of adaptation and their visualizations on landscapes. While some adaptations result from single mutations or few-gene effects, others are more cooperative, more delocalized in the genome, and more universal and physical. For example, homeostasis and evolution depend on protein folding and aggregation, energy and protein production, protein diffusion, molecular motor speeds and efficiencies, and protein expression levels. Models provide a way to learn about the fitness of cells and cell populations by making and testing hypotheses.","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-chembioeng-011720-103410","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-011720-103410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 18

Abstract

Cells adapt to changing environments. Perturb a cell and it returns to a point of homeostasis. Perturb a population and it evolves toward a fitness peak. We review quantitative models of the forces of adaptation and their visualizations on landscapes. While some adaptations result from single mutations or few-gene effects, others are more cooperative, more delocalized in the genome, and more universal and physical. For example, homeostasis and evolution depend on protein folding and aggregation, energy and protein production, protein diffusion, molecular motor speeds and efficiencies, and protein expression levels. Models provide a way to learn about the fitness of cells and cell populations by making and testing hypotheses.
细胞如何适应?风景中的故事。
细胞适应不断变化的环境。扰乱一个细胞,它就会恢复到一个自我平衡的状态。扰动一个种群,它就会进化到适合度峰值。我们回顾了适应力量的定量模型及其对景观的可视化。虽然一些适应是由单个突变或少数基因作用产生的,但其他适应是更合作的,在基因组中更不定位,更普遍和物理。例如,体内平衡和进化取决于蛋白质折叠和聚集、能量和蛋白质生产、蛋白质扩散、分子马达速度和效率以及蛋白质表达水平。模型通过提出和检验假设,提供了一种了解细胞和细胞群适应度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信