Detection and Localization of Early-Stage Multiple Brain Tumors Using a Hybrid Technique of Patch-Based Processing, k-means Clustering and Object Counting.
{"title":"Detection and Localization of Early-Stage Multiple Brain Tumors Using a Hybrid Technique of Patch-Based Processing, k-means Clustering and Object Counting.","authors":"Mohamed Nasor, Walid Obaid","doi":"10.1155/2020/9035096","DOIUrl":null,"url":null,"abstract":"<p><p>Brain tumors are a major health problem that affect the lives of many people. These tumors are classified as benign or cancerous. The latter can be fatal if not properly diagnosed and treated. Therefore, the diagnosis of brain tumors at the early stages of their development can significantly improve the chances of patient's full recovery after treatment. In addition to laboratory analyses, clinicians and surgeons extract information from medical images, recorded by various systems such as magnetic resonance imaging (MRI), X-ray, and computed tomography (CT). The extracted information is used to identify the essential characteristics of brain tumors (location, size, and type) in order to achieve an accurate diagnosis to determine the most appropriate treatment protocol. In this paper, we present an automated machine vision technique for the detection and localization of brain tumors in MRI images at their very early stages using a combination of <i>k</i>-means clustering, patch-based image processing, object counting, and tumor evaluation. The technique was tested on twenty real MRI images and was found to be capable of detecting multiple tumors in MRI images regardless of their intensity level variations, size, and location including those with very small sizes. In addition to its use for diagnosis, the technique can be integrated into automated treatment instruments and robotic surgery systems.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2020 ","pages":"9035096"},"PeriodicalIF":3.3000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/9035096","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2020/9035096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 24
Abstract
Brain tumors are a major health problem that affect the lives of many people. These tumors are classified as benign or cancerous. The latter can be fatal if not properly diagnosed and treated. Therefore, the diagnosis of brain tumors at the early stages of their development can significantly improve the chances of patient's full recovery after treatment. In addition to laboratory analyses, clinicians and surgeons extract information from medical images, recorded by various systems such as magnetic resonance imaging (MRI), X-ray, and computed tomography (CT). The extracted information is used to identify the essential characteristics of brain tumors (location, size, and type) in order to achieve an accurate diagnosis to determine the most appropriate treatment protocol. In this paper, we present an automated machine vision technique for the detection and localization of brain tumors in MRI images at their very early stages using a combination of k-means clustering, patch-based image processing, object counting, and tumor evaluation. The technique was tested on twenty real MRI images and was found to be capable of detecting multiple tumors in MRI images regardless of their intensity level variations, size, and location including those with very small sizes. In addition to its use for diagnosis, the technique can be integrated into automated treatment instruments and robotic surgery systems.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics