{"title":"High impact polytriazole resins for advanced composites.","authors":"Mingming Ma, Xiuyun Wang, Zhuoer Yu, Liqiang Wan, Farong Huang","doi":"10.1080/15685551.2020.1761584","DOIUrl":null,"url":null,"abstract":"<p><p>Three azido-terminated poly(ethylene glycol) macromonomers (ATPEGs) were synthesized from poly(ethylene glycol)s (PEGs) and characterized. The extended polytriazole (EPTA) resins were prepared from the macromonomers, azide and alkyne monomers. Toughening effect of PEGs on polytriazole resins was analyzed by means of mechanical, thermal and electronic microscope characterization. The results show that molecular weight and content of ATPEGs have great influence on the thermal and mechanical properties of cured EPTA resins. The impact strength of cured EPTA resins increases with the increase of the amount and molecular weight of ATPEGs. The flexural strength and heat resistance of cured EPTA resins decrease with the increase of addition amount and molecular weight of ATPEGs. High impact EPTA resins were obtained.</p>","PeriodicalId":11170,"journal":{"name":"Designed Monomers and Polymers","volume":"23 1","pages":"50-58"},"PeriodicalIF":1.8000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15685551.2020.1761584","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designed Monomers and Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/15685551.2020.1761584","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Three azido-terminated poly(ethylene glycol) macromonomers (ATPEGs) were synthesized from poly(ethylene glycol)s (PEGs) and characterized. The extended polytriazole (EPTA) resins were prepared from the macromonomers, azide and alkyne monomers. Toughening effect of PEGs on polytriazole resins was analyzed by means of mechanical, thermal and electronic microscope characterization. The results show that molecular weight and content of ATPEGs have great influence on the thermal and mechanical properties of cured EPTA resins. The impact strength of cured EPTA resins increases with the increase of the amount and molecular weight of ATPEGs. The flexural strength and heat resistance of cured EPTA resins decrease with the increase of addition amount and molecular weight of ATPEGs. High impact EPTA resins were obtained.
期刊介绍:
Designed Monomers and Polymers ( DMP) publishes prompt peer-reviewed papers and short topical reviews on all areas of macromolecular design and applications. Emphasis is placed on the preparations of new monomers, including characterization and applications. Experiments should be presented in sufficient detail (including specific observations, precautionary notes, use of new materials, techniques, and their possible problems) that they could be reproduced by any researcher wishing to repeat the work.
The journal also includes macromolecular design of polymeric materials (such as polymeric biomaterials, biomedical polymers, etc.) with medical applications.
DMP provides an interface between organic and polymer chemistries and aims to bridge the gap between monomer synthesis and the design of new polymers. Submssions are invited in the areas including, but not limited to:
-macromolecular science, initiators, macroinitiators for macromolecular design
-kinetics, mechanism and modelling aspects of polymerization
-new methods of synthesis of known monomers
-new monomers (must show evidence for polymerization, e.g. polycondensation, sequential combination, oxidative coupling, radiation, plasma polymerization)
-functional prepolymers of various architectures such as hyperbranched polymers, telechelic polymers, macromonomers, or dendrimers
-new polymeric materials with biomedical applications