Stacey E Anderson, Rachel Baur, Michael Kashon, Ewa Lukomska, Lisa Weatherly, Hillary L Shane
{"title":"Potential classification of chemical immunologic response based on gene expression profiles.","authors":"Stacey E Anderson, Rachel Baur, Michael Kashon, Ewa Lukomska, Lisa Weatherly, Hillary L Shane","doi":"10.1080/1547691X.2020.1758855","DOIUrl":null,"url":null,"abstract":"<p><p>Occupational immune diseases are a serious public health burden and are often a result of exposure to low molecular weight (LMW) chemicals. The complete immunological mechanisms driving these responses are not fully understood which has made the classification of chemical allergens difficult. Antimicrobials are a large group of immunologically-diverse LMW agents. In these studies, mice were dermally exposed to representative antimicrobial chemicals (sensitizers: didecyldimethylammonium chloride (DDAC), <i>ortho</i>-phthalaldehyde (OPA), irritants: benzal-konium chloride (BAC), and adjuvant: triclosan (TCS)) and the mRNA expression of cytokines and cellular mediators was evaluated using real-time qPCR in various tissues over a 7-days period. All antimicrobials caused increases in the mRNA expression of the danger signals <i>Tslp</i> (skin), and <i>S100a8</i> (skin, blood, lung). Expression of the T<sub>H</sub>2 cytokine <i>Il4</i> peaked at different timepoints for the chemicals based on exposure duration. Unique expression profiles were identified for OPA (<i>Il10</i> in lymph node, <i>Il4</i> and <i>Il13</i> in lung) and TCS (<i>Tlr4</i> in skin). Additionally, all chemicals except OPA induced decreased expression of the cellular adhesion molecule <i>Ecad</i>. Overall, the results from these studies suggest that unique gene expression profiles are implicated following dermal exposure to various antimicrobial agents, warranting the need for additional studies. In order to advance the development of preventative and therapeutic strategies to combat immunological disease, underlying mechanisms of antimicrobial-induced immunomodulation must be fully understood. This understanding will aid in the development of more effective methods to screen for chemical toxicity, and may potentially lead to more effective treatment strategies for those suffering from immune diseases.</p>","PeriodicalId":16073,"journal":{"name":"Journal of Immunotoxicology","volume":" ","pages":"122-134"},"PeriodicalIF":2.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673648/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1547691X.2020.1758855","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Occupational immune diseases are a serious public health burden and are often a result of exposure to low molecular weight (LMW) chemicals. The complete immunological mechanisms driving these responses are not fully understood which has made the classification of chemical allergens difficult. Antimicrobials are a large group of immunologically-diverse LMW agents. In these studies, mice were dermally exposed to representative antimicrobial chemicals (sensitizers: didecyldimethylammonium chloride (DDAC), ortho-phthalaldehyde (OPA), irritants: benzal-konium chloride (BAC), and adjuvant: triclosan (TCS)) and the mRNA expression of cytokines and cellular mediators was evaluated using real-time qPCR in various tissues over a 7-days period. All antimicrobials caused increases in the mRNA expression of the danger signals Tslp (skin), and S100a8 (skin, blood, lung). Expression of the TH2 cytokine Il4 peaked at different timepoints for the chemicals based on exposure duration. Unique expression profiles were identified for OPA (Il10 in lymph node, Il4 and Il13 in lung) and TCS (Tlr4 in skin). Additionally, all chemicals except OPA induced decreased expression of the cellular adhesion molecule Ecad. Overall, the results from these studies suggest that unique gene expression profiles are implicated following dermal exposure to various antimicrobial agents, warranting the need for additional studies. In order to advance the development of preventative and therapeutic strategies to combat immunological disease, underlying mechanisms of antimicrobial-induced immunomodulation must be fully understood. This understanding will aid in the development of more effective methods to screen for chemical toxicity, and may potentially lead to more effective treatment strategies for those suffering from immune diseases.
期刊介绍:
The Journal of Immunotoxicology is an open access, peer-reviewed journal that provides a needed singular forum for the international community of immunotoxicologists, immunologists, and toxicologists working in academia, government, consulting, and industry to both publish their original research and be made aware of the research findings of their colleagues in a timely manner. Research from many subdisciplines are presented in the journal, including the areas of molecular, developmental, pulmonary, regulatory, nutritional, mechanistic, wildlife, and environmental immunotoxicology, immunology, and toxicology. Original research articles as well as timely comprehensive reviews are published.