Computational Phenotyping: Using Models to Understand Individual Differences in Personality, Development, and Mental Illness.

Q3 Medicine
Personality Neuroscience Pub Date : 2018-10-18 eCollection Date: 2018-01-01 DOI:10.1017/pen.2018.14
Edward H Patzelt, Catherine A Hartley, Samuel J Gershman
{"title":"Computational Phenotyping: Using Models to Understand Individual Differences in Personality, Development, and Mental Illness.","authors":"Edward H Patzelt,&nbsp;Catherine A Hartley,&nbsp;Samuel J Gershman","doi":"10.1017/pen.2018.14","DOIUrl":null,"url":null,"abstract":"<p><p>This paper reviews progress in the application of computational models to personality, developmental, and clinical neuroscience. We first describe the concept of a computational phenotype, a collection of parameters derived from computational models fit to behavioral and neural data. This approach represents individuals as points in a continuous parameter space, complementing traditional trait and symptom measures. One key advantage of this representation is that it is mechanistic: The parameters have interpretations in terms of cognitive processes, which can be translated into quantitative predictions about future behavior and brain activity. We illustrate with several examples how this approach has led to new scientific insights into individual differences, developmental trajectories, and psychopathology. We then survey some of the challenges that lay ahead.</p>","PeriodicalId":36424,"journal":{"name":"Personality Neuroscience","volume":" ","pages":"e18"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/pen.2018.14","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personality Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/pen.2018.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 32

Abstract

This paper reviews progress in the application of computational models to personality, developmental, and clinical neuroscience. We first describe the concept of a computational phenotype, a collection of parameters derived from computational models fit to behavioral and neural data. This approach represents individuals as points in a continuous parameter space, complementing traditional trait and symptom measures. One key advantage of this representation is that it is mechanistic: The parameters have interpretations in terms of cognitive processes, which can be translated into quantitative predictions about future behavior and brain activity. We illustrate with several examples how this approach has led to new scientific insights into individual differences, developmental trajectories, and psychopathology. We then survey some of the challenges that lay ahead.

Abstract Image

Abstract Image

Abstract Image

计算表型:使用模型来理解个性、发展和精神疾病的个体差异。
本文综述了计算模型在人格、发育和临床神经科学中的应用进展。我们首先描述了计算表型的概念,这是一组从适合行为和神经数据的计算模型中得出的参数集合。这种方法将个体表示为连续参数空间中的点,补充了传统的特征和症状测量。这种表征的一个关键优势是它是机械性的:参数可以根据认知过程进行解释,这可以转化为对未来行为和大脑活动的定量预测。我们用几个例子来说明这种方法是如何导致对个体差异、发展轨迹和精神病理学的新的科学见解的。然后,我们将调查未来面临的一些挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Personality Neuroscience
Personality Neuroscience Medicine-Neurology (clinical)
CiteScore
2.90
自引率
0.00%
发文量
4
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信