{"title":"Spatially extended balanced networks without translationally invariant connectivity.","authors":"Christopher Ebsch, Robert Rosenbaum","doi":"10.1186/s13408-020-00085-w","DOIUrl":null,"url":null,"abstract":"<p><p>Networks of neurons in the cerebral cortex exhibit a balance between excitation (positive input current) and inhibition (negative input current). Balanced network theory provides a parsimonious mathematical model of this excitatory-inhibitory balance using randomly connected networks of model neurons in which balance is realized as a stable fixed point of network dynamics in the limit of large network size. Balanced network theory reproduces many salient features of cortical network dynamics such as asynchronous-irregular spiking activity. Early studies of balanced networks did not account for the spatial topology of cortical networks. Later works introduced spatial connectivity structure, but were restricted to networks with translationally invariant connectivity structure in which connection probability depends on distance alone and boundaries are assumed to be periodic. Spatial connectivity structure in cortical network does not always satisfy these assumptions. We use the mathematical theory of integral equations to extend the mean-field theory of balanced networks to account for more general dependence of connection probability on the spatial location of pre- and postsynaptic neurons. We compare our mathematical derivations to simulations of large networks of recurrently connected spiking neuron models.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":" ","pages":"8"},"PeriodicalIF":2.3000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-020-00085-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-020-00085-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
Networks of neurons in the cerebral cortex exhibit a balance between excitation (positive input current) and inhibition (negative input current). Balanced network theory provides a parsimonious mathematical model of this excitatory-inhibitory balance using randomly connected networks of model neurons in which balance is realized as a stable fixed point of network dynamics in the limit of large network size. Balanced network theory reproduces many salient features of cortical network dynamics such as asynchronous-irregular spiking activity. Early studies of balanced networks did not account for the spatial topology of cortical networks. Later works introduced spatial connectivity structure, but were restricted to networks with translationally invariant connectivity structure in which connection probability depends on distance alone and boundaries are assumed to be periodic. Spatial connectivity structure in cortical network does not always satisfy these assumptions. We use the mathematical theory of integral equations to extend the mean-field theory of balanced networks to account for more general dependence of connection probability on the spatial location of pre- and postsynaptic neurons. We compare our mathematical derivations to simulations of large networks of recurrently connected spiking neuron models.
期刊介绍:
The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions.
It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged.
Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.