{"title":"Exploration of the interactions between mycoviruses and Fusarium graminearum.","authors":"Jisuk Yu, Kook-Hyung Kim","doi":"10.1016/bs.aivir.2020.01.004","DOIUrl":null,"url":null,"abstract":"<p><p>In this review, we discuss recent studies of the interaction between Fusarium graminearum viruses (FgVs) and the fungal host, Fusarium graminearum. Comprehensive transcriptome and proteome analyses have shown changes in the expression of host genes in response to infection by diverse FgVs. Using omics data and reverse genetics, researchers have determined the effects of some fungal host proteins (including FgHex1, FgHal2, FgSwi6, and vr1) on virus accumulation, virus transmission, and host symptom development. Recent reports have revealed the functions of the RNAi component in F. graminearum and the functional redundancy of FgDICERs and FgAGOs in the antiviral defense response against different FgV infections. Studies have also documented a unique mechanism used by FgV1 to overcome the antiviral response of the fungal host.</p>","PeriodicalId":50977,"journal":{"name":"Advances in Virus Research","volume":"106 ","pages":"123-144"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.aivir.2020.01.004","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Virus Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.aivir.2020.01.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 11
Abstract
In this review, we discuss recent studies of the interaction between Fusarium graminearum viruses (FgVs) and the fungal host, Fusarium graminearum. Comprehensive transcriptome and proteome analyses have shown changes in the expression of host genes in response to infection by diverse FgVs. Using omics data and reverse genetics, researchers have determined the effects of some fungal host proteins (including FgHex1, FgHal2, FgSwi6, and vr1) on virus accumulation, virus transmission, and host symptom development. Recent reports have revealed the functions of the RNAi component in F. graminearum and the functional redundancy of FgDICERs and FgAGOs in the antiviral defense response against different FgV infections. Studies have also documented a unique mechanism used by FgV1 to overcome the antiviral response of the fungal host.