More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in Cryptococcus neoformans.

IF 4.1 3区 生物学 Q2 CELL BIOLOGY
Chengjun Cao, Chaoyang Xue
{"title":"More than flipping the lid: Cdc50 contributes to echinocandin resistance by regulating calcium homeostasis in <i>Cryptococcus neoformans</i>.","authors":"Chengjun Cao,&nbsp;Chaoyang Xue","doi":"10.15698/mic2020.04.714","DOIUrl":null,"url":null,"abstract":"<p><p>Echinocandins are the newest fungicidal drug class approved for clinical use against common invasive mycoses. Yet, they are ineffective against cryptococcosis, predominantly caused by <i>Cryptococcus neoformans</i>. The underlying mechanisms of innate echinocandin resistance in <i>C. neoformans</i> remain unclear. We know that Cdc50, the β-subunit of the lipid translocase (flippase), mediates echinocandin resistance, as loss of the <i>CDC50</i> gene sensitizes <i>C. neoformans</i> to caspofungin, a member of the echinocandins class. We sought to elucidate how Cdc50 facilitates caspofungin resistance by performing a forward genetic screen for <i>cdc50</i>Δ suppressor mutations that are caspofungin resistant. We identified a novel mechanosensitive calcium channel protein Crm1 that correlates with Cdc50 function (Cao <i>et al.</i>, 2019). In addition to regulating phospholipid translocation, Cdc50 also interacts with Crm1 to regulate intracellular calcium homeostasis and calcium/calcineurin signaling that likely drives caspofungin resistance in <i>C. neoformans</i>. Our study revealed a novel dual function of Cdc50 that connects lipid flippase with calcium signaling. These unexpected findings provide new insights into the mechanisms of echinocandin resistance in <i>C. neoformans</i> that may drive future drug design.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"7 4","pages":"115-118"},"PeriodicalIF":4.1000,"publicationDate":"2020-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136755/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2020.04.714","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Echinocandins are the newest fungicidal drug class approved for clinical use against common invasive mycoses. Yet, they are ineffective against cryptococcosis, predominantly caused by Cryptococcus neoformans. The underlying mechanisms of innate echinocandin resistance in C. neoformans remain unclear. We know that Cdc50, the β-subunit of the lipid translocase (flippase), mediates echinocandin resistance, as loss of the CDC50 gene sensitizes C. neoformans to caspofungin, a member of the echinocandins class. We sought to elucidate how Cdc50 facilitates caspofungin resistance by performing a forward genetic screen for cdc50Δ suppressor mutations that are caspofungin resistant. We identified a novel mechanosensitive calcium channel protein Crm1 that correlates with Cdc50 function (Cao et al., 2019). In addition to regulating phospholipid translocation, Cdc50 also interacts with Crm1 to regulate intracellular calcium homeostasis and calcium/calcineurin signaling that likely drives caspofungin resistance in C. neoformans. Our study revealed a novel dual function of Cdc50 that connects lipid flippase with calcium signaling. These unexpected findings provide new insights into the mechanisms of echinocandin resistance in C. neoformans that may drive future drug design.

Abstract Image

Abstract Image

不仅仅是翻转盖子:Cdc50通过调节新生隐球菌的钙稳态来促进棘白菌素耐药性。
棘白菌素是最新被批准用于临床治疗常见侵袭性真菌病的杀菌剂。然而,它们对主要由新型隐球菌引起的隐球菌病无效。新生芽孢杆菌先天棘白菌素耐药的潜在机制尚不清楚。我们知道Cdc50,脂质转位酶(翻转酶)的β-亚基,介导棘白菌素耐药性,因为Cdc50基因的缺失使新形态C.对棘白菌素类成员caspofungin敏感。我们试图通过对caspofungin耐药cdc50Δ抑制基因突变进行正向遗传筛选来阐明Cdc50如何促进caspofungin耐药。我们发现了一种与Cdc50功能相关的新型机械敏感钙通道蛋白Crm1 (Cao et al., 2019)。除了调节磷脂易位外,Cdc50还与Crm1相互作用,调节细胞内钙稳态和钙/钙调神经磷酸酶信号传导,这可能驱动新生C. caspofungin耐药性。我们的研究揭示了Cdc50连接脂质翻转酶和钙信号的一种新的双重功能。这些意想不到的发现为新生梭菌的棘白菌素耐药机制提供了新的见解,可能会推动未来的药物设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell
Microbial Cell Multiple-
CiteScore
6.40
自引率
0.00%
发文量
32
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信