{"title":"Molecular Pathogenesis of Middle East Respiratory Syndrome (MERS) Coronavirus.","authors":"Arinjay Banerjee, Kaushal Baid, Karen Mossman","doi":"10.1007/s40588-019-00122-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is listed in the World Health Organization's blueprint of priority diseases that need immediate research. Camels are reservoirs of this virus, and the virus spills over into humans through direct contact with camels. Human-to-human transmission and travel-associated cases have been identified as well. Limited studies have characterized the molecular pathogenesis of MERS-CoV. Most studies have used ectopic expression of viral proteins to characterize MERS-CoV and its ability to modulate antiviral responses in human cells. Studies with live virus are limited, largely due to the requirement of high containment laboratories. In this review, we have summarized current studies on MERS-CoV molecular pathogenesis and have mentioned some recent strategies that are being developed to control MERS-CoV infection.</p><p><strong>Recent findings: </strong>Multiple antiviral molecules with the potential to inhibit MERS-CoV infection by disrupting virus-receptor interactions are being developed and tested. Although human vaccine candidates are still being developed, a candidate camel vaccine is being tested for efficacy. Combination of supportive treatment with interferon and antivirals is also being explored.</p><p><strong>Summary: </strong>New antiviral molecules that inhibit MERS-CoV and host cell receptor interaction may become available in the future. Additional studies are required to identify and characterize the pathogenesis of MERS-CoV EMC/2012 and other circulating strains. An effective MERS-CoV vaccine, for humans and/or camels, along with an efficient combination antiviral therapy may help us prevent future MERS cases.</p>","PeriodicalId":45506,"journal":{"name":"Current Clinical Microbiology Reports","volume":"6 3","pages":"139-147"},"PeriodicalIF":3.1000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40588-019-00122-7","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Clinical Microbiology Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40588-019-00122-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/7/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 15
Abstract
Purpose of review: Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012 and is listed in the World Health Organization's blueprint of priority diseases that need immediate research. Camels are reservoirs of this virus, and the virus spills over into humans through direct contact with camels. Human-to-human transmission and travel-associated cases have been identified as well. Limited studies have characterized the molecular pathogenesis of MERS-CoV. Most studies have used ectopic expression of viral proteins to characterize MERS-CoV and its ability to modulate antiviral responses in human cells. Studies with live virus are limited, largely due to the requirement of high containment laboratories. In this review, we have summarized current studies on MERS-CoV molecular pathogenesis and have mentioned some recent strategies that are being developed to control MERS-CoV infection.
Recent findings: Multiple antiviral molecules with the potential to inhibit MERS-CoV infection by disrupting virus-receptor interactions are being developed and tested. Although human vaccine candidates are still being developed, a candidate camel vaccine is being tested for efficacy. Combination of supportive treatment with interferon and antivirals is also being explored.
Summary: New antiviral molecules that inhibit MERS-CoV and host cell receptor interaction may become available in the future. Additional studies are required to identify and characterize the pathogenesis of MERS-CoV EMC/2012 and other circulating strains. An effective MERS-CoV vaccine, for humans and/or camels, along with an efficient combination antiviral therapy may help us prevent future MERS cases.
期刊介绍:
Current Clinical Microbiology Reports commissions expert reviews from leading scientists at the forefront of research in microbiology. The journal covers this broad field by dividing it into four key main areas of study: virology, bacteriology, parasitology, and mycology. Within each of the four sections, experts from around the world address important aspects of clinical microbiology such as immunology, diagnostics, therapeutics, antibiotics and antibiotic resistance, and vaccines. Some of the world’s foremost authorities in the field of microbiology serve as section editors and editorial board members. Section editors select topics for which leading researchers are invited to contribute comprehensive review articles that emphasize new developments and recently published papers of major importance, which are highlighted in annotated reference lists. These timely reviews of the literature examine the latest scientific discoveries and controversies as they emerge and are indispensable to both researchers and clinicians. The editorial board, composed of more than 20 internationally diverse members, reviews the annual table of contents, ensures that topics address all aspects of emerging research, and where applicable suggests topics of critical importance to various countries/regions.