Markian S Bahniuk, Abdullah K Alshememry, Larry D Unsworth
{"title":"Human plasma protein adsorption to elastinlike polypeptide nanoparticles.","authors":"Markian S Bahniuk, Abdullah K Alshememry, Larry D Unsworth","doi":"10.1116/6.0000027","DOIUrl":null,"url":null,"abstract":"<p><p>Elastin-like polypeptides (ELPs) are being developed for numerous biomedical applications. There is a limited understanding of ELP biocompatibility, with conflicting results in the literature. Protein adsorption is the fate determining event for blood-contacting biomaterials. The aim of this study is to elucidate the biocompatibility of ELP-based nanoparticles by examining the adsorbed proteome from platelet poor human plasma as a function of the physicochemical properties of these nanoparticles: diameter, amino acid hydrophobicity, and chain length. It was found that all ELP constructs had adsorbed an extremely large amount of albumin and high levels of immunoglobulin G and activated complement factor 3. Variations in the compositions of the proteomes across the eight nanoparticle systems studied were observed for plasminogen, fibronectin, activated fibrinogen, and coagulation modulating antithrombin and alpha<sub>2</sub> macroglobulin. Plasma clotting experiments showed that ELP-based nanoparticles slightly inhibited normal blood clotting, with shorter and/or more hydrophilic constructs showing a greater difference from the control than longer or more hydrophobic constructs. These results indicate that ELP nanoparticles, regardless of chain length, particle diameter, or amino acid hydrophobicity, may have the potential to stimulate a humoral immune response via immunoglobulin G and activated complement factor 3 despite the large amounts of albumin adsorbed at the blood-material interface.</p>","PeriodicalId":49232,"journal":{"name":"Biointerphases","volume":"15 2","pages":"021007"},"PeriodicalIF":2.1000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1116/6.0000027","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0000027","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 7
Abstract
Elastin-like polypeptides (ELPs) are being developed for numerous biomedical applications. There is a limited understanding of ELP biocompatibility, with conflicting results in the literature. Protein adsorption is the fate determining event for blood-contacting biomaterials. The aim of this study is to elucidate the biocompatibility of ELP-based nanoparticles by examining the adsorbed proteome from platelet poor human plasma as a function of the physicochemical properties of these nanoparticles: diameter, amino acid hydrophobicity, and chain length. It was found that all ELP constructs had adsorbed an extremely large amount of albumin and high levels of immunoglobulin G and activated complement factor 3. Variations in the compositions of the proteomes across the eight nanoparticle systems studied were observed for plasminogen, fibronectin, activated fibrinogen, and coagulation modulating antithrombin and alpha2 macroglobulin. Plasma clotting experiments showed that ELP-based nanoparticles slightly inhibited normal blood clotting, with shorter and/or more hydrophilic constructs showing a greater difference from the control than longer or more hydrophobic constructs. These results indicate that ELP nanoparticles, regardless of chain length, particle diameter, or amino acid hydrophobicity, may have the potential to stimulate a humoral immune response via immunoglobulin G and activated complement factor 3 despite the large amounts of albumin adsorbed at the blood-material interface.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.