Suprachiasmatic lesions restore object recognition in down syndrome model mice

Q2 Medicine
Bayarsaikhan Chuluun , Elsa Pittaras , Hyunseung Hong, Nathan Fisher, Damien Colas, Norman F. Ruby, H. Craig Heller
{"title":"Suprachiasmatic lesions restore object recognition in down syndrome model mice","authors":"Bayarsaikhan Chuluun ,&nbsp;Elsa Pittaras ,&nbsp;Hyunseung Hong,&nbsp;Nathan Fisher,&nbsp;Damien Colas,&nbsp;Norman F. Ruby,&nbsp;H. Craig Heller","doi":"10.1016/j.nbscr.2020.100049","DOIUrl":null,"url":null,"abstract":"<div><p>The Ts65Dn mouse is a well-studied model of trisomy 21, Down syndrome. This mouse strain has severe learning disability as measured by several rodent learning tests that depend on hippocampal spatial memory function. Hippocampal long-term potentiation (LTP) is deficient in these mice. Short-term daily treatment with low-dose GABA receptor antagonists rescue spatial learning and LTP in Ts65Dn mice leading to the hypothesis that the learning disability is due to GABAergic over-inhibition of hippocampal circuits. The fact that the GABA receptor antagonists were only effective if delivered during the daily light phase suggested that the source of the excess GABA was controlled directly or indirectly by the circadian system. The central circadian pacemaker of mammals is the suprachiasmatic nucleus (SCN), which is largely a GABAergic nucleus. In this study we investigated whether elimination of the SCN in Ts65Dn mice would restore their ability to form recognition memories as tested by the novel object recognition (NOR) task. Full, but not partial lesions of the SCN of Ts65Dn mice normalized their ability to perform on the NOR test. These results suggest that the circadian system modulates neuroplasticity over the time frame involved in the process of consolidation of recognition memories.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2020.100049","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994420300018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9

Abstract

The Ts65Dn mouse is a well-studied model of trisomy 21, Down syndrome. This mouse strain has severe learning disability as measured by several rodent learning tests that depend on hippocampal spatial memory function. Hippocampal long-term potentiation (LTP) is deficient in these mice. Short-term daily treatment with low-dose GABA receptor antagonists rescue spatial learning and LTP in Ts65Dn mice leading to the hypothesis that the learning disability is due to GABAergic over-inhibition of hippocampal circuits. The fact that the GABA receptor antagonists were only effective if delivered during the daily light phase suggested that the source of the excess GABA was controlled directly or indirectly by the circadian system. The central circadian pacemaker of mammals is the suprachiasmatic nucleus (SCN), which is largely a GABAergic nucleus. In this study we investigated whether elimination of the SCN in Ts65Dn mice would restore their ability to form recognition memories as tested by the novel object recognition (NOR) task. Full, but not partial lesions of the SCN of Ts65Dn mice normalized their ability to perform on the NOR test. These results suggest that the circadian system modulates neuroplasticity over the time frame involved in the process of consolidation of recognition memories.

Abstract Image

Abstract Image

Abstract Image

视交叉上损伤恢复唐氏综合症模型小鼠的物体识别能力
Ts65Dn小鼠是一种被充分研究的21三体唐氏综合征模型。通过几项依赖海马空间记忆功能的啮齿动物学习测试,该小鼠品系具有严重的学习障碍。海马长期增强(LTP)在这些小鼠中是缺乏的。短期每日低剂量GABA受体拮抗剂治疗Ts65Dn小鼠的空间学习和LTP,导致学习障碍是由于海马回路的GABA能过度抑制。事实上,GABA受体拮抗剂只有在每天的光照阶段才有效,这表明过量GABA的来源是由昼夜节律系统直接或间接控制的。哺乳动物的中央昼夜节律起搏器是视交叉上核(SCN),它主要是一个gaba能核。在这项研究中,我们研究了消除Ts65Dn小鼠的SCN是否会恢复它们形成识别记忆的能力,并通过新对象识别(NOR)任务进行了测试。Ts65Dn小鼠的全部而非部分SCN病变使其在NOR测试中的表现正常。这些结果表明,在识别记忆巩固过程中,昼夜节律系统在时间框架内调节神经可塑性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Sleep and Circadian Rhythms
Neurobiology of Sleep and Circadian Rhythms Neuroscience-Behavioral Neuroscience
CiteScore
4.50
自引率
0.00%
发文量
9
审稿时长
69 days
期刊介绍: Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信