Possibilities and Limits of Computational Fluid Dynamics-Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends.
Paul Kieckhefen, Swantje Pietsch, Maksym Dosta, Stefan Heinrich
{"title":"Possibilities and Limits of Computational Fluid Dynamics-Discrete Element Method Simulations in Process Engineering: A Review of Recent Advancements and Future Trends.","authors":"Paul Kieckhefen, Swantje Pietsch, Maksym Dosta, Stefan Heinrich","doi":"10.1146/annurev-chembioeng-110519-075414","DOIUrl":null,"url":null,"abstract":"<p><p>Fluid-solid systems play a major role in a wide variety of industries, from pharmaceutical and consumer goods to chemical plants and energy generation. Along with this variety of fields comes a diversity in apparatuses and applications, most prominently fluidized and spouted beds, granulators and mixers, pneumatic conveying, drying, agglomeration, coating, and combustion. The most promising approach for modeling the flow in these systems is the CFD-DEM method, coupling computational fluid dynamics (CFD) for the fluid phase and the discrete element method (DEM) for the particles. This article reviews the progress in modeling particle-fluid flows with the CFD-DEM method. A brief overview of the basic method as well as methodical extensions of it are given. Recent applications of this simulation approach to separation and classification units, fluidized beds for both particle formation and energy conversion, comminution units, filtration, and bioreactors are reviewed. Future trends are identified and discussed regarding their viability.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"11 ","pages":"397-422"},"PeriodicalIF":7.6000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-chembioeng-110519-075414","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-110519-075414","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 44
Abstract
Fluid-solid systems play a major role in a wide variety of industries, from pharmaceutical and consumer goods to chemical plants and energy generation. Along with this variety of fields comes a diversity in apparatuses and applications, most prominently fluidized and spouted beds, granulators and mixers, pneumatic conveying, drying, agglomeration, coating, and combustion. The most promising approach for modeling the flow in these systems is the CFD-DEM method, coupling computational fluid dynamics (CFD) for the fluid phase and the discrete element method (DEM) for the particles. This article reviews the progress in modeling particle-fluid flows with the CFD-DEM method. A brief overview of the basic method as well as methodical extensions of it are given. Recent applications of this simulation approach to separation and classification units, fluidized beds for both particle formation and energy conversion, comminution units, filtration, and bioreactors are reviewed. Future trends are identified and discussed regarding their viability.
期刊介绍:
The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.