Xuchen Nie, Xiaoyue Wu, Yang Wang, Siyuan Ban, Zhihao Lei, Jiabao Yi, Ying Liu and Yanpeng Liu
{"title":"Surface acoustic wave induced phenomena in two-dimensional materials","authors":"Xuchen Nie, Xiaoyue Wu, Yang Wang, Siyuan Ban, Zhihao Lei, Jiabao Yi, Ying Liu and Yanpeng Liu","doi":"10.1039/D2NH00458E","DOIUrl":null,"url":null,"abstract":"<p >Surface acoustic wave (SAW)–matter interaction provides a fascinating key for inducing and manipulating novel phenomena and functionalities in two-dimensional (2D) materials. The dynamic strain field and piezo-electric field associated with propagating SAWs determine the coherent manipulation and transduction between 2D excitons and phonons. Over the past decade, many intriguing acoustic-induced effects, including the acousto-electric effect, acousto-galvanic effect, acoustic Stark effect, acoustic Hall effect and acoustic exciton transport, have been reported experimentally. However, many more phenomena, such as the valley acousto-electric effect, valley acousto-electric Hall effect and acoustic spin Hall effect, were only theoretically proposed, the experimental verification of which are yet to be achieved. In this minireview, we attempt to overview the recent breakthrough of SAW-induced phenomena covering acoustic charge transport, acoustic exciton transport and modulation, and coherent acoustic phonons. Perspectives on the opportunities of the proposed SAW-induced phenomena, as well as open experimental challenges, are also discussed, attempting to offer some guidelines for experimentalists and theorists to explore the desired exotic properties and boost practical applications of 2D materials.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 2","pages":" 158-175"},"PeriodicalIF":6.6000,"publicationDate":"2022-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/nh/d2nh00458e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Surface acoustic wave (SAW)–matter interaction provides a fascinating key for inducing and manipulating novel phenomena and functionalities in two-dimensional (2D) materials. The dynamic strain field and piezo-electric field associated with propagating SAWs determine the coherent manipulation and transduction between 2D excitons and phonons. Over the past decade, many intriguing acoustic-induced effects, including the acousto-electric effect, acousto-galvanic effect, acoustic Stark effect, acoustic Hall effect and acoustic exciton transport, have been reported experimentally. However, many more phenomena, such as the valley acousto-electric effect, valley acousto-electric Hall effect and acoustic spin Hall effect, were only theoretically proposed, the experimental verification of which are yet to be achieved. In this minireview, we attempt to overview the recent breakthrough of SAW-induced phenomena covering acoustic charge transport, acoustic exciton transport and modulation, and coherent acoustic phonons. Perspectives on the opportunities of the proposed SAW-induced phenomena, as well as open experimental challenges, are also discussed, attempting to offer some guidelines for experimentalists and theorists to explore the desired exotic properties and boost practical applications of 2D materials.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.