Roberta Scrimieri, Laura Locatelli, Roberta Cazzola, Jeanette A M Maier, Alessandra Cazzaniga
{"title":"Reactive oxygen species are implicated in altering magnesium homeostasis in endothelial cells exposed to high glucose.","authors":"Roberta Scrimieri, Laura Locatelli, Roberta Cazzola, Jeanette A M Maier, Alessandra Cazzaniga","doi":"10.1684/mrh.2019.0456","DOIUrl":null,"url":null,"abstract":"<p><p>Transient Receptor Potential Melastatin (TRPM)7 is important in maintaining the intracellular homeostasis of magnesium (Mg), which is instrumental for vital cellular functions. Since the upregulation of TRPM7 has been proposed as a marker of endothelial dysfunction, we evaluated the effects of high glucose, which markedly impacts endothelial performance, on TRPM7 and intracellular Mg homeostasis in human macrovascular endothelial cells. We show that glucose-induced free radicals increase the amounts of TRPM7 as well as total intracellular magnesium. On the contrary, the highly selective Mg transporter MagT1 is not modulated by high glucose, hydrogen peroxide and low extracellular magnesium. We conclude that in endothelial cells high glucose alters Mg homeostasis through the upregulation of TRPM7.</p>","PeriodicalId":18159,"journal":{"name":"Magnesium research","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnesium research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/mrh.2019.0456","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Transient Receptor Potential Melastatin (TRPM)7 is important in maintaining the intracellular homeostasis of magnesium (Mg), which is instrumental for vital cellular functions. Since the upregulation of TRPM7 has been proposed as a marker of endothelial dysfunction, we evaluated the effects of high glucose, which markedly impacts endothelial performance, on TRPM7 and intracellular Mg homeostasis in human macrovascular endothelial cells. We show that glucose-induced free radicals increase the amounts of TRPM7 as well as total intracellular magnesium. On the contrary, the highly selective Mg transporter MagT1 is not modulated by high glucose, hydrogen peroxide and low extracellular magnesium. We conclude that in endothelial cells high glucose alters Mg homeostasis through the upregulation of TRPM7.
期刊介绍:
Magnesium Research, the official journal of the international Society for the Development of Research on Magnesium (SDRM), has been the benchmark journal on the use of magnesium in biomedicine for more than 30 years.
This quarterly publication provides regular updates on multinational and multidisciplinary research into magnesium, bringing together original experimental and clinical articles, correspondence, Letters to the Editor, comments on latest news, general features, summaries of relevant articles from other journals, and reports and statements from national and international conferences and symposiums.
Indexed in the leading medical databases, Magnesium Research is an essential journal for specialists and general practitioners, for basic and clinical researchers, for practising doctors and academics.