Arun Sharma, Samuel Sances, Michael J Workman, Clive N Svendsen
{"title":"Multi-lineage Human iPSC-Derived Platforms for Disease Modeling and Drug Discovery.","authors":"Arun Sharma, Samuel Sances, Michael J Workman, Clive N Svendsen","doi":"10.1016/j.stem.2020.02.011","DOIUrl":null,"url":null,"abstract":"<p><p>Human induced pluripotent stem cells (hiPSCs) provide a powerful platform for disease modeling and have unlocked new possibilities for understanding the mechanisms governing human biology, physiology, and genetics. However, hiPSC-derivatives have traditionally been utilized in two-dimensional monocultures, in contrast to the multi-systemic interactions that influence cells in the body. We will discuss recent advances in generating more complex hiPSC-based systems using three-dimensional organoids, tissue-engineering, microfluidic organ-chips, and humanized animal systems. While hiPSC differentiation still requires optimization, these next-generation multi-lineage technologies can augment the biomedical researcher's toolkit and enable more realistic models of human tissue function.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":" ","pages":"309-329"},"PeriodicalIF":9.6000,"publicationDate":"2020-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7159985/pdf/nihms-1568737.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stem.2020.02.011","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Human induced pluripotent stem cells (hiPSCs) provide a powerful platform for disease modeling and have unlocked new possibilities for understanding the mechanisms governing human biology, physiology, and genetics. However, hiPSC-derivatives have traditionally been utilized in two-dimensional monocultures, in contrast to the multi-systemic interactions that influence cells in the body. We will discuss recent advances in generating more complex hiPSC-based systems using three-dimensional organoids, tissue-engineering, microfluidic organ-chips, and humanized animal systems. While hiPSC differentiation still requires optimization, these next-generation multi-lineage technologies can augment the biomedical researcher's toolkit and enable more realistic models of human tissue function.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.