Matrix-assisted DOSY

IF 7.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Iain J. Day
{"title":"Matrix-assisted DOSY","authors":"Iain J. Day","doi":"10.1016/j.pnmrs.2019.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis of mixtures by NMR spectroscopy is challenging. Diffusion-ordered NMR spectroscopy enables a pseudo-separation of species based on differences in their translational diffusion coefficients. Under the right circumstances, this is a powerful technique; however, when molecules diffuse at similar rates separation in the diffusion dimension can be poor. In addition, spectral overlap also limits resolution and can make interpretation challenging. Matrix-assisted diffusion NMR seeks to improve resolution in the diffusion dimension by utilising the differential interaction of components in the mixture with an additive to the solvent. Tuning these matrix-analyte interactions allows the diffusion resolution to be optimised. This review presents the background to matrix-assisted diffusion experiments, surveys the wide range of matrices employed, including chromatographic stationary phases, surfactants and polymers, and demonstrates the current state of the art.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"116 ","pages":"Pages 1-18"},"PeriodicalIF":7.3000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2019.09.001","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656519300445","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11

Abstract

The analysis of mixtures by NMR spectroscopy is challenging. Diffusion-ordered NMR spectroscopy enables a pseudo-separation of species based on differences in their translational diffusion coefficients. Under the right circumstances, this is a powerful technique; however, when molecules diffuse at similar rates separation in the diffusion dimension can be poor. In addition, spectral overlap also limits resolution and can make interpretation challenging. Matrix-assisted diffusion NMR seeks to improve resolution in the diffusion dimension by utilising the differential interaction of components in the mixture with an additive to the solvent. Tuning these matrix-analyte interactions allows the diffusion resolution to be optimised. This review presents the background to matrix-assisted diffusion experiments, surveys the wide range of matrices employed, including chromatographic stationary phases, surfactants and polymers, and demonstrates the current state of the art.

Abstract Image

Matrix-assisted DOSY
用核磁共振光谱分析混合物是具有挑战性的。扩散有序核磁共振光谱使基于其平移扩散系数的差异的物种的伪分离。在适当的情况下,这是一种强大的技术;然而,当分子以相似的速率扩散时,在扩散维度上的分离可能很差。此外,光谱重叠也限制了分辨率,并可能使解释具有挑战性。基质辅助扩散核磁共振旨在通过利用混合物中组分与溶剂添加剂的差异相互作用来提高扩散维度的分辨率。调整这些基质-分析物相互作用可以使扩散分辨率得到优化。这篇综述介绍了基质辅助扩散实验的背景,调查了广泛使用的基质,包括色谱固定相,表面活性剂和聚合物,并展示了目前的技术状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.30
自引率
8.20%
发文量
12
审稿时长
62 days
期刊介绍: Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信