{"title":"Dynamics in inorganic glass-forming liquids by NMR spectroscopy","authors":"Sabyasachi Sen","doi":"10.1016/j.pnmrs.2019.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Dynamical NMR spectroscopy provides unique mechanistic understanding of the transport and relaxation processes in glass-forming liquids over timescales typically ranging from ~10<sup>−9</sup> s to ~10<sup>2</sup> s, and thus has been used extensively in the past to study the dynamical behavior of polymeric and organic glass-forming liquids. However, reports in the literature of similar studies on inorganic glass-forming liquids have remained somewhat limited due to the experimental challenges. In this contribution we present a review of the high-temperature NMR spectroscopic studies of atomic and molecular dynamics in a wide variety of inorganic glass-forming liquids including oxides, halides and chalcogenides as well as select ionic liquids and molten salts. The significance of these dynamical processes in understanding the nature of the liquid-to-glass transition and their connection with the macroscopic transport properties of these liquids are discussed.</p></div>","PeriodicalId":20740,"journal":{"name":"Progress in Nuclear Magnetic Resonance Spectroscopy","volume":"116 ","pages":"Pages 155-176"},"PeriodicalIF":7.3000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pnmrs.2019.11.001","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Nuclear Magnetic Resonance Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079656519300494","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 19
Abstract
Dynamical NMR spectroscopy provides unique mechanistic understanding of the transport and relaxation processes in glass-forming liquids over timescales typically ranging from ~10−9 s to ~102 s, and thus has been used extensively in the past to study the dynamical behavior of polymeric and organic glass-forming liquids. However, reports in the literature of similar studies on inorganic glass-forming liquids have remained somewhat limited due to the experimental challenges. In this contribution we present a review of the high-temperature NMR spectroscopic studies of atomic and molecular dynamics in a wide variety of inorganic glass-forming liquids including oxides, halides and chalcogenides as well as select ionic liquids and molten salts. The significance of these dynamical processes in understanding the nature of the liquid-to-glass transition and their connection with the macroscopic transport properties of these liquids are discussed.
期刊介绍:
Progress in Nuclear Magnetic Resonance Spectroscopy publishes review papers describing research related to the theory and application of NMR spectroscopy. This technique is widely applied in chemistry, physics, biochemistry and materials science, and also in many areas of biology and medicine. The journal publishes review articles covering applications in all of these and in related subjects, as well as in-depth treatments of the fundamental theory of and instrumental developments in NMR spectroscopy.