Na Yeon Kim, Sang Ho Moon, Seong Jin Kim, Eun Kyung Kim, Mirae Oh, Yujiao Tang, Se Young Jang
{"title":"Summer season temperature-humidity index threshold for infrared thermography in Hanwoo (Bos taurus coreanae) heifers.","authors":"Na Yeon Kim, Sang Ho Moon, Seong Jin Kim, Eun Kyung Kim, Mirae Oh, Yujiao Tang, Se Young Jang","doi":"10.5713/ajas.19.0762","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The study sought to estimate the relationship between body surface temperature (BST) and temperature humidity index (THI) and to present the validity of THI as a heat stress index in the field.</p><p><strong>Methods: </strong>Eight Hanwoo heifers (20 to 32 month) were examined in a field trial, with a space allowance of 10 m2 per head. The BST was measured using an infrared thermographic camera. The BST of five body regions (eyes, hindquarters, nose, part of horns, and ears), ambient temperature (AT), and relative humidity (RH) were measured 7 times daily (07, 09, 11, 13, 15, 17, and 19 h) during each season with three replicates.</p><p><strong>Results: </strong>The THI ranged 34.0 to 56.9 during spring (AT, -1.0°C to 13.4°C), 75.1 to 84.7 during summer (AT, 24.9°C to 33.6°C), 55.8 to 70.9 during autumn (AT, 13.0°C to 26.0°C) and 17.5 to 39.2 during winter (AT, -10.4°C to 1.0°C). In the regression analysis, the coefficient of determination (R2) between THI and BST was 0.88, 0.72, 0.83, 0.86, and 0.85 for the eyes, hindquarters, nose, part of horn, and ears area, respectively. This indicates that BST has a strong correlation with AT and RH. Expression equations were estimated as Y (THI) = 31.54+0.1085X (BST of eyes) and Y (THI) = 30.48+0.1147X (BST of hindquarters) by simple linear regression analysis in this experiment.</p><p><strong>Conclusion: </strong>Consequently, the upper bound for heat stress estimation can be specified ranging from THI of 65 (eyes) to 70 (hindquarters). From this we can expect a precise feeding system for Korean native cattle in the field.</p>","PeriodicalId":8558,"journal":{"name":"Asian-Australasian Journal of Animal Sciences","volume":"33 10","pages":"1691-1698"},"PeriodicalIF":2.2000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463074/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-Australasian Journal of Animal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5713/ajas.19.0762","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Objective: The study sought to estimate the relationship between body surface temperature (BST) and temperature humidity index (THI) and to present the validity of THI as a heat stress index in the field.
Methods: Eight Hanwoo heifers (20 to 32 month) were examined in a field trial, with a space allowance of 10 m2 per head. The BST was measured using an infrared thermographic camera. The BST of five body regions (eyes, hindquarters, nose, part of horns, and ears), ambient temperature (AT), and relative humidity (RH) were measured 7 times daily (07, 09, 11, 13, 15, 17, and 19 h) during each season with three replicates.
Results: The THI ranged 34.0 to 56.9 during spring (AT, -1.0°C to 13.4°C), 75.1 to 84.7 during summer (AT, 24.9°C to 33.6°C), 55.8 to 70.9 during autumn (AT, 13.0°C to 26.0°C) and 17.5 to 39.2 during winter (AT, -10.4°C to 1.0°C). In the regression analysis, the coefficient of determination (R2) between THI and BST was 0.88, 0.72, 0.83, 0.86, and 0.85 for the eyes, hindquarters, nose, part of horn, and ears area, respectively. This indicates that BST has a strong correlation with AT and RH. Expression equations were estimated as Y (THI) = 31.54+0.1085X (BST of eyes) and Y (THI) = 30.48+0.1147X (BST of hindquarters) by simple linear regression analysis in this experiment.
Conclusion: Consequently, the upper bound for heat stress estimation can be specified ranging from THI of 65 (eyes) to 70 (hindquarters). From this we can expect a precise feeding system for Korean native cattle in the field.
期刊介绍:
Asian-Australasian Journal of Animal Sciences (AJAS) aims to publish original and cutting-edge research results and reviews on animal-related aspects of the life sciences. Emphasis will be placed on studies involving farm animals such as cattle, buffaloes, sheep, goats, pigs, horses, and poultry. Studies for the improvement of human health using animal models may also be publishable.
AJAS will encompass all areas of animal production and fundamental aspects of animal sciences: breeding and genetics, reproduction and physiology, nutrition, meat and milk science, biotechnology, behavior, welfare, health, and livestock farming systems.