{"title":"Physicochemical properties and energy content of yellow dent corn from different climatic origins in growing pigs.","authors":"Wenxuan Dong, Juntao Li, Zhongchao Li, Shuo Zhang, Xiaozhen Li, Chundi Yang, Ling Liu, Shuai Zhang","doi":"10.5713/ajas.19.0715","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this study was to determine the digestible energy (DE) and metabolizable energy (ME) of yellow dent corn sourced from different meteorological origins fed to growing pigs and develop equations to predict the DE and ME of yellow dent corn from southwestern China.</p><p><strong>Methods: </strong>Sixty crossbred barrows were allotted to 20 treatments in a triplicate 20×2 incomplete Latin square design with 3 replicated pigs per dietary treatment during 2 consecutive periods. Each period lasted for 12 days, and total feces and urine during the last 5 days of each period were collected to calculate the energy contents.</p><p><strong>Results: </strong>On dry matter (DM) basis, the DE and ME in 20 corn grain samples ranged from 15.38 to 16.78 MJ/kg and from 14.93 to 16.16 MJ/kg, respectively. Selected best-fit prediction equations for DE and ME (MJ/kg DM basis) for yellow dent corn (n = 16) sourced from southwestern China were as follows: DE = 28.58-(0.12×% hemicellulose)+(0.35×% ether extract)-(0.83×MJ/kg gross energy)+(0.20×% crude protein)+(0.49×% ash); ME = 30.42- (0.11×% hemicellulose)+(0.31×% ether extract)-(0.81×MJ/kg gross energy).</p><p><strong>Conclusion: </strong>Our results indicated that the chemical compositions, but not the meteorological conditions or physical characteristics could explain the variation of energy contents in yellow dent corn sourced from southwestern China fed to growing pigs.</p>","PeriodicalId":8558,"journal":{"name":"Asian-Australasian Journal of Animal Sciences","volume":"33 11","pages":"1787-1796"},"PeriodicalIF":2.2000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649078/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-Australasian Journal of Animal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5713/ajas.19.0715","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Objective: The objective of this study was to determine the digestible energy (DE) and metabolizable energy (ME) of yellow dent corn sourced from different meteorological origins fed to growing pigs and develop equations to predict the DE and ME of yellow dent corn from southwestern China.
Methods: Sixty crossbred barrows were allotted to 20 treatments in a triplicate 20×2 incomplete Latin square design with 3 replicated pigs per dietary treatment during 2 consecutive periods. Each period lasted for 12 days, and total feces and urine during the last 5 days of each period were collected to calculate the energy contents.
Results: On dry matter (DM) basis, the DE and ME in 20 corn grain samples ranged from 15.38 to 16.78 MJ/kg and from 14.93 to 16.16 MJ/kg, respectively. Selected best-fit prediction equations for DE and ME (MJ/kg DM basis) for yellow dent corn (n = 16) sourced from southwestern China were as follows: DE = 28.58-(0.12×% hemicellulose)+(0.35×% ether extract)-(0.83×MJ/kg gross energy)+(0.20×% crude protein)+(0.49×% ash); ME = 30.42- (0.11×% hemicellulose)+(0.31×% ether extract)-(0.81×MJ/kg gross energy).
Conclusion: Our results indicated that the chemical compositions, but not the meteorological conditions or physical characteristics could explain the variation of energy contents in yellow dent corn sourced from southwestern China fed to growing pigs.
期刊介绍:
Asian-Australasian Journal of Animal Sciences (AJAS) aims to publish original and cutting-edge research results and reviews on animal-related aspects of the life sciences. Emphasis will be placed on studies involving farm animals such as cattle, buffaloes, sheep, goats, pigs, horses, and poultry. Studies for the improvement of human health using animal models may also be publishable.
AJAS will encompass all areas of animal production and fundamental aspects of animal sciences: breeding and genetics, reproduction and physiology, nutrition, meat and milk science, biotechnology, behavior, welfare, health, and livestock farming systems.