{"title":"The molecular basis for diminished muscle function in acidosis: a proposal.","authors":"Sherwin S Lehrer","doi":"10.1007/s10974-020-09576-5","DOIUrl":null,"url":null,"abstract":"<p><p>A testable molecular proposal for the effects of acidosis on skeletal and cardiac muscle is presented. It is based on fluorescence studies published in 1974, which provided evidence for carboxylates in an EF-hand Ca<sup>2+</sup> binding site having an abnormal pKa. This results in an H<sup>+</sup>-bound Blocked substate in the 3-state model of muscle regulation whose contribution inhibits myosin binding in the pH 7 to 6 range. A schematic cartoon illustrates the substate within the 3-state model.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":"41 2-3","pages":"259-263"},"PeriodicalIF":1.8000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10974-020-09576-5","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-020-09576-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
A testable molecular proposal for the effects of acidosis on skeletal and cardiac muscle is presented. It is based on fluorescence studies published in 1974, which provided evidence for carboxylates in an EF-hand Ca2+ binding site having an abnormal pKa. This results in an H+-bound Blocked substate in the 3-state model of muscle regulation whose contribution inhibits myosin binding in the pH 7 to 6 range. A schematic cartoon illustrates the substate within the 3-state model.
期刊介绍:
The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.