Rab7B/42 Is Functionally Involved in Protein Degradation on Melanosomes in Keratinocytes.

IF 2 4区 生物学 Q4 CELL BIOLOGY
Cell structure and function Pub Date : 2020-03-18 Epub Date: 2020-02-07 DOI:10.1247/csf.19039
Soujiro Marubashi, Mitsunori Fukuda
{"title":"Rab7B/42 Is Functionally Involved in Protein Degradation on Melanosomes in Keratinocytes.","authors":"Soujiro Marubashi, Mitsunori Fukuda","doi":"10.1247/csf.19039","DOIUrl":null,"url":null,"abstract":"<p><p>Keratinocytes uptake melanosomes from melanocytes and retain them in the perinuclear region, where they form melanin caps. Although these processes are crucial to protecting nuclear DNA against ultraviolet injury, the molecular basis of melanosome uptake and decomposition in keratinocytes is poorly understood. One of the major reasons for its being poorly understood is the lack of a specific marker protein that can be used to visualize or monitor melanosomes (or melanosome-containing compartments) that have been incorporated into keratinocytes. In this study, we performed a comprehensive localization screening for mammalian Rab family small GTPases (Rab1-45) and succeeded in identifying 11 Rabs that were enriched around melanosomes that had been incorporated into keratinocytes. We also established a new assay by using a recently developed melanosome probe (called M-INK) as a means of quantitatively assessing the degradation of proteins on incorporated melanosomes in control and each of a series of Rab-knockdown keratinocytes. The results showed that knockdown or CRISPR/Cas9-mediated knockout of Rab7B (also identified as Rab42) in keratinocytes caused strong inhibition of protein degradation on melanosomes. Our findings indicated that Rab7B/42 is recruited to melanosome-containing compartments and that it promotes protein degradation on melanosomes in keratinocytes.Key words: degradation, keratinocytes, melanocytes, melanosome, Rab small GTPase.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":"45 1","pages":"45-55"},"PeriodicalIF":2.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1247/csf.19039","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.19039","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 18

Abstract

Keratinocytes uptake melanosomes from melanocytes and retain them in the perinuclear region, where they form melanin caps. Although these processes are crucial to protecting nuclear DNA against ultraviolet injury, the molecular basis of melanosome uptake and decomposition in keratinocytes is poorly understood. One of the major reasons for its being poorly understood is the lack of a specific marker protein that can be used to visualize or monitor melanosomes (or melanosome-containing compartments) that have been incorporated into keratinocytes. In this study, we performed a comprehensive localization screening for mammalian Rab family small GTPases (Rab1-45) and succeeded in identifying 11 Rabs that were enriched around melanosomes that had been incorporated into keratinocytes. We also established a new assay by using a recently developed melanosome probe (called M-INK) as a means of quantitatively assessing the degradation of proteins on incorporated melanosomes in control and each of a series of Rab-knockdown keratinocytes. The results showed that knockdown or CRISPR/Cas9-mediated knockout of Rab7B (also identified as Rab42) in keratinocytes caused strong inhibition of protein degradation on melanosomes. Our findings indicated that Rab7B/42 is recruited to melanosome-containing compartments and that it promotes protein degradation on melanosomes in keratinocytes.Key words: degradation, keratinocytes, melanocytes, melanosome, Rab small GTPase.

Rab7B/42 在功能上参与角质形成细胞黑色素体上的蛋白质降解
角质形成细胞从黑色素细胞中摄取黑色素小体,并将其保留在核周区域,在那里形成黑色素帽。虽然这些过程对保护核 DNA 免受紫外线伤害至关重要,但人们对角质形成细胞摄取和分解黑色素体的分子基础知之甚少。人们对其了解甚少的主要原因之一是缺乏一种特异性标记蛋白,可用于观察或监测已被纳入角朊细胞的黑色素小体(或含黑色素小体的区室)。在这项研究中,我们对哺乳动物Rab家族小GTP酶(Rab1-45)进行了全面的定位筛选,并成功鉴定出11种Rabs,这些Rabs富集在被整合到角朊细胞中的黑色素体周围。我们还利用最近开发的黑色素体探针(称为 M-INK)建立了一种新的检测方法,用于定量评估对照组和一系列 Rab 敲除的角质形成细胞中每个黑色素体上蛋白质的降解情况。结果表明,在角朊细胞中敲除或CRISPR/Cas9介导的Rab7B(也称为Rab42)会强烈抑制黑色素体上的蛋白质降解。我们的研究结果表明,Rab7B/42被招募到含黑色素体的区室,并促进了角朊细胞中黑色素体上的蛋白质降解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell structure and function
Cell structure and function 生物-细胞生物学
CiteScore
2.50
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print. Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信