Ying Zhang, Yuan-Yuan Li, Xiao-Mei Chen, Shun-Xing Guo, Yung-I Lee
{"title":"Effect of different mycobionts on symbiotic germination and seedling growth of Dendrobium officinale, an important medicinal orchid.","authors":"Ying Zhang, Yuan-Yuan Li, Xiao-Mei Chen, Shun-Xing Guo, Yung-I Lee","doi":"10.1186/s40529-019-0278-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Orchids maintain a symbiotic relationship with mycorrhizal fungi in the lifecycle. Previous reports indicated that diverse mycobionts may have different roles during orchid growth and development. Although various mycorrhizal fungi have been isolated from Dendrobium roots and protocorms, little is known about their specific effects on seed germination and seedling growth. To understand the specific role of isolated fungal strains (i.e., Tulasnella and Sebacina), we used symbiotic culture to compare the effect of 6 fungal strains on seed germination and seedling growth of Dendrobium officinale, an important Chinese medicinal orchid.</p><p><strong>Results: </strong>In symbiotic germination tests, 6 fungal strains (4 Tulasnella strains and 2 Sebacina strains) promoted seed germination with different efficiencies. Seeds inoculated with Tulasnella strains S6 and S7 conferred higher germination percentage and faster protocorm development than other fungal strains. In symbiotic cultures, seedlings inoculated with Sebacina strain S3 had optimal fresh and dry matter yield. Also, Tulasnella strains S6 and S7 promoted seedling growth with good fresh and dry matter yield. Sebacina strain S2 inoculation greatly enhanced root and tiller production and the content of total crude polysaccharides, although seedlings were smaller with less fresh and dry matter yield than other seedlings.</p><p><strong>Conclusions: </strong>Tulasnella and Sebacina strains could promote seed germination and seedling growth of D. officinale with different efficiencies. Our results suggest a non-specific mycorrhizal association and development-dependent preference. Our data provide the basic knowledge for use of different fungal strains in conservation and/or production practices of D. officinale.</p>","PeriodicalId":48844,"journal":{"name":"Botanical Studies","volume":"61 1","pages":"2"},"PeriodicalIF":4.1000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6985412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Botanical Studies","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40529-019-0278-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Orchids maintain a symbiotic relationship with mycorrhizal fungi in the lifecycle. Previous reports indicated that diverse mycobionts may have different roles during orchid growth and development. Although various mycorrhizal fungi have been isolated from Dendrobium roots and protocorms, little is known about their specific effects on seed germination and seedling growth. To understand the specific role of isolated fungal strains (i.e., Tulasnella and Sebacina), we used symbiotic culture to compare the effect of 6 fungal strains on seed germination and seedling growth of Dendrobium officinale, an important Chinese medicinal orchid.
Results: In symbiotic germination tests, 6 fungal strains (4 Tulasnella strains and 2 Sebacina strains) promoted seed germination with different efficiencies. Seeds inoculated with Tulasnella strains S6 and S7 conferred higher germination percentage and faster protocorm development than other fungal strains. In symbiotic cultures, seedlings inoculated with Sebacina strain S3 had optimal fresh and dry matter yield. Also, Tulasnella strains S6 and S7 promoted seedling growth with good fresh and dry matter yield. Sebacina strain S2 inoculation greatly enhanced root and tiller production and the content of total crude polysaccharides, although seedlings were smaller with less fresh and dry matter yield than other seedlings.
Conclusions: Tulasnella and Sebacina strains could promote seed germination and seedling growth of D. officinale with different efficiencies. Our results suggest a non-specific mycorrhizal association and development-dependent preference. Our data provide the basic knowledge for use of different fungal strains in conservation and/or production practices of D. officinale.
期刊介绍:
Botanical Studies is an open access journal that encompasses all aspects of botany, including but not limited to taxonomy, morphology, development, genetics, evolution, reproduction, systematics, and biodiversity of all plant groups, algae, and fungi. The journal is affiliated with the Institute of Plant and Microbial Biology, Academia Sinica, Taiwan.