Shrey Sindhwani, Abdullah Muhammad Syed, Jessica Ngai, Benjamin R. Kingston, Laura Maiorino, Jeremy Rothschild, Presley MacMillan, Yuwei Zhang, Netra Unni Rajesh, Tran Hoang, Jamie L. Y. Wu, Stefan Wilhelm, Anton Zilman, Suresh Gadde, Andrew Sulaiman, Ben Ouyang, Zachary Lin, Lisheng Wang, Mikala Egeblad, Warren C. W. Chan
{"title":"The entry of nanoparticles into solid tumours","authors":"Shrey Sindhwani, Abdullah Muhammad Syed, Jessica Ngai, Benjamin R. Kingston, Laura Maiorino, Jeremy Rothschild, Presley MacMillan, Yuwei Zhang, Netra Unni Rajesh, Tran Hoang, Jamie L. Y. Wu, Stefan Wilhelm, Anton Zilman, Suresh Gadde, Andrew Sulaiman, Ben Ouyang, Zachary Lin, Lisheng Wang, Mikala Egeblad, Warren C. W. Chan","doi":"10.1038/s41563-019-0566-2","DOIUrl":null,"url":null,"abstract":"The concept of nanoparticle transport through gaps between endothelial cells (inter-endothelial gaps) in the tumour blood vessel is a central paradigm in cancer nanomedicine. The size of these gaps was found to be up to 2,000 nm. This justified the development of nanoparticles to treat solid tumours as their size is small enough to extravasate and access the tumour microenvironment. Here we show that these inter-endothelial gaps are not responsible for the transport of nanoparticles into solid tumours. Instead, we found that up to 97% of nanoparticles enter tumours using an active process through endothelial cells. This result is derived from analysis of four different mouse models, three different types of human tumours, mathematical simulation and modelling, and two different types of imaging techniques. These results challenge our current rationale for developing cancer nanomedicine and suggest that understanding these active pathways will unlock strategies to enhance tumour accumulation. The dominant mechanism of nanoparticle entry into solid tumours has now been shown to be an active trans-endothelial pathway rather than the currently established passive transport via inter-endothelial gaps.","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"19 5","pages":"566-575"},"PeriodicalIF":37.2000,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41563-019-0566-2","citationCount":"807","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41563-019-0566-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 807
Abstract
The concept of nanoparticle transport through gaps between endothelial cells (inter-endothelial gaps) in the tumour blood vessel is a central paradigm in cancer nanomedicine. The size of these gaps was found to be up to 2,000 nm. This justified the development of nanoparticles to treat solid tumours as their size is small enough to extravasate and access the tumour microenvironment. Here we show that these inter-endothelial gaps are not responsible for the transport of nanoparticles into solid tumours. Instead, we found that up to 97% of nanoparticles enter tumours using an active process through endothelial cells. This result is derived from analysis of four different mouse models, three different types of human tumours, mathematical simulation and modelling, and two different types of imaging techniques. These results challenge our current rationale for developing cancer nanomedicine and suggest that understanding these active pathways will unlock strategies to enhance tumour accumulation. The dominant mechanism of nanoparticle entry into solid tumours has now been shown to be an active trans-endothelial pathway rather than the currently established passive transport via inter-endothelial gaps.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.