Hyperosmotic stress: in situ chromatin phase separation.

Ada L Olins, Travis J Gould, Logan Boyd, Bettina Sarg, Donald E Olins
{"title":"Hyperosmotic stress: <i>in situ</i> chromatin phase separation.","authors":"Ada L Olins,&nbsp;Travis J Gould,&nbsp;Logan Boyd,&nbsp;Bettina Sarg,&nbsp;Donald E Olins","doi":"10.1080/19491034.2019.1710321","DOIUrl":null,"url":null,"abstract":"<p><p>Dehydration of cells by acute hyperosmotic stress has profound effects upon cell structure and function. Interphase chromatin and mitotic chromosomes collapse (\"congelation\"). HL-60/S4 cells remain ~100% viable for, at least, 1 hour, exhibiting shrinkage to ~2/3 their original volume, when placed in 300mM sucrose in tissue culture medium. Fixed cells were imaged by immunostaining confocal and STED microscopy. At a \"global\" structural level (μm), mitotic chromosomes congeal into a residual gel with apparent (phase) separations of Ki67, CTCF, SMC2, RAD21, H1 histones and HMG proteins. At an \"intermediate\" level (sub-μm), radial distribution analysis of STED images revealed a most probable peak DNA density separation of ~0.16 μm, essentially unchanged by hyperosmotic stress. At a \"local\" structural level (~1-2 nm), in vivo crosslinking revealed essentially unchanged crosslinked products between H1, HMG and inner histones. Hyperosmotic cellular stress is discussed in terms of concepts of mitotic chromosome structure and liquid-liquid phase separation.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2019.1710321","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleus (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19491034.2019.1710321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Dehydration of cells by acute hyperosmotic stress has profound effects upon cell structure and function. Interphase chromatin and mitotic chromosomes collapse ("congelation"). HL-60/S4 cells remain ~100% viable for, at least, 1 hour, exhibiting shrinkage to ~2/3 their original volume, when placed in 300mM sucrose in tissue culture medium. Fixed cells were imaged by immunostaining confocal and STED microscopy. At a "global" structural level (μm), mitotic chromosomes congeal into a residual gel with apparent (phase) separations of Ki67, CTCF, SMC2, RAD21, H1 histones and HMG proteins. At an "intermediate" level (sub-μm), radial distribution analysis of STED images revealed a most probable peak DNA density separation of ~0.16 μm, essentially unchanged by hyperosmotic stress. At a "local" structural level (~1-2 nm), in vivo crosslinking revealed essentially unchanged crosslinked products between H1, HMG and inner histones. Hyperosmotic cellular stress is discussed in terms of concepts of mitotic chromosome structure and liquid-liquid phase separation.

Abstract Image

Abstract Image

Abstract Image

高渗胁迫:原位染色质相分离。
急性高渗应激引起的细胞脱水对细胞的结构和功能有深远的影响。间期染色质和有丝分裂染色体塌缩(“凝缩”)。将HL-60/S4细胞置于300mM蔗糖的组织培养基中,至少1小时内,HL-60/S4细胞保持~100%的存活率,收缩至原来体积的~2/3。用免疫染色共聚焦和STED显微镜对固定细胞进行成像。在“全局”结构水平(μm)上,有丝分裂的染色体凝结成残留凝胶,Ki67、CTCF、SMC2、RAD21、H1组蛋白和HMG蛋白明显(相)分离。在“中间”水平(亚μm), STED图像的径向分布分析显示,最可能的峰值DNA密度分离为~0.16 μm,在高渗胁迫下基本没有变化。在“局部”结构水平(~1-2 nm),体内交联显示H1、HMG和内部组蛋白之间的交联产物基本不变。从有丝分裂染色体结构和液-液相分离的概念讨论了高渗细胞胁迫。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信