How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients.

IF 7.9 Q1 Medicine
Natalia A Trayanova, Ashish N Doshi, Adityo Prakosa
{"title":"How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients.","authors":"Natalia A Trayanova,&nbsp;Ashish N Doshi,&nbsp;Adityo Prakosa","doi":"10.1002/wsbm.1477","DOIUrl":null,"url":null,"abstract":"<p><p>Precision Cardiology is a targeted strategy for cardiovascular disease prevention and treatment that accounts for individual variability. Computational heart modeling is one of the novel approaches that have been developed under the umbrella of Precision Cardiology. Personalized computational modeling of patient hearts has made strides in the development of models that incorporate the individual geometry and structure of the heart as well as other patient-specific information. Of these developments, one of the potentially most impactful is the research aimed at noninvasively predicting the targets of ablation of lethal arrhythmia, ventricular tachycardia (VT), using patient-specific models. The approach has been successfully applied to patients with ischemic cardiomyopathy in proof-of-concept studies. The goal of this paper is to review the strategies for computational VT ablation guidance in ischemic cardiomyopathy patients, from model developments to the intricacies of the actual clinical application. To provide context in describing the road these computational modeling applications have undertaken, we first review the state of the art in VT ablation in the clinic, emphasizing the benefits that personalized computational prediction of ablation targets could bring to the clinical electrophysiology practice. This article is characterized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Translational, Genomic, and Systems Medicine > Translational Medicine.</p>","PeriodicalId":49254,"journal":{"name":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","volume":"12 3","pages":"e1477"},"PeriodicalIF":7.9000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wsbm.1477","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews-Systems Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wsbm.1477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 14

Abstract

Precision Cardiology is a targeted strategy for cardiovascular disease prevention and treatment that accounts for individual variability. Computational heart modeling is one of the novel approaches that have been developed under the umbrella of Precision Cardiology. Personalized computational modeling of patient hearts has made strides in the development of models that incorporate the individual geometry and structure of the heart as well as other patient-specific information. Of these developments, one of the potentially most impactful is the research aimed at noninvasively predicting the targets of ablation of lethal arrhythmia, ventricular tachycardia (VT), using patient-specific models. The approach has been successfully applied to patients with ischemic cardiomyopathy in proof-of-concept studies. The goal of this paper is to review the strategies for computational VT ablation guidance in ischemic cardiomyopathy patients, from model developments to the intricacies of the actual clinical application. To provide context in describing the road these computational modeling applications have undertaken, we first review the state of the art in VT ablation in the clinic, emphasizing the benefits that personalized computational prediction of ablation targets could bring to the clinical electrophysiology practice. This article is characterized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Translational, Genomic, and Systems Medicine > Translational Medicine.

个性化心脏建模如何帮助治疗致命性心律失常:梗死后患者室性心动过速消融策略的重点。
精准心脏病学是心血管疾病预防和治疗的一种有针对性的策略,考虑到个体的可变性。计算心脏建模是在精密心脏病学的保护伞下发展起来的新方法之一。患者心脏的个性化计算建模在模型的发展方面取得了长足的进步,这些模型结合了心脏的个体几何和结构以及其他患者特定的信息。在这些发展中,最具潜在影响力的研究之一是利用患者特异性模型,无创预测致死性心律失常室性心动过速(VT)消融目标的研究。该方法已成功应用于缺血性心肌病患者的概念验证研究。本文的目的是回顾缺血性心肌病患者的计算VT消融指导策略,从模型的发展到实际临床应用的复杂性。为了提供描述这些计算建模应用的背景,我们首先回顾了临床室速消融的最新进展,强调了消融目标的个性化计算预测可能给临床电生理学实践带来的好处。本文的特点是:分析和计算方法>系统特性和过程的计算方法模型>器官、组织和生理模型>转化、基因组和系统医学>转化医学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
18.40
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Journal Name:Wiley Interdisciplinary Reviews-Systems Biology and Medicine Focus: Strong interdisciplinary focus Serves as an encyclopedic reference for systems biology research Conceptual Framework: Systems biology asserts the study of organisms as hierarchical systems or networks Individual biological components interact in complex ways within these systems Article Coverage: Discusses biology, methods, and models Spans systems from a few molecules to whole species Topical Coverage: Developmental Biology Physiology Biological Mechanisms Models of Systems, Properties, and Processes Laboratory Methods and Technologies Translational, Genomic, and Systems Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信