Anna Radziejewska, Agata Muzsik, Fermín I Milagro, J Alfredo Martínez, Agata Chmurzynska
{"title":"One-Carbon Metabolism and Nonalcoholic Fatty Liver Disease: The Crosstalk between Nutrients, Microbiota, and Genetics.","authors":"Anna Radziejewska, Agata Muzsik, Fermín I Milagro, J Alfredo Martínez, Agata Chmurzynska","doi":"10.1159/000504602","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Its etiology includes nutritional, genetic, and lifestyle factors. Several mechanisms may link one-carbon metabolism - the associated metabolic pathways of folate, methionine, and choline - to the onset of NAFLD. In this review, we attempted to assess how choline, folate, methionine, and betaine affect NAFLD development, mainly through their role in the secretion of very low-density lipoproteins (VLDL) from the liver. We also reviewed recent articles that have described the relation between microbiota metabolism and NAFLD progression. Moreover, we describe the effect of single-nucleotide polymorphisms (SNP) in genes related to one-carbon metabolism and disease prevalence. We additionally seek SNP identified by genome-wide associations that may increase the risk of this disease. Even though the evidence available is not entirely consistent, it seems that the concentrations of choline, methionine, folate, and betaine may affect the progression of NAFLD. Since there is no effective therapy for NAFLD, further investigations into the link between nutrition, gut microbiota, genetic factors, and NAFLD are still necessary, with a particular emphasis on methyl donors.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":"13 2","pages":"53-63"},"PeriodicalIF":2.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000504602","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifestyle Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000504602","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/12/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 25
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Its etiology includes nutritional, genetic, and lifestyle factors. Several mechanisms may link one-carbon metabolism - the associated metabolic pathways of folate, methionine, and choline - to the onset of NAFLD. In this review, we attempted to assess how choline, folate, methionine, and betaine affect NAFLD development, mainly through their role in the secretion of very low-density lipoproteins (VLDL) from the liver. We also reviewed recent articles that have described the relation between microbiota metabolism and NAFLD progression. Moreover, we describe the effect of single-nucleotide polymorphisms (SNP) in genes related to one-carbon metabolism and disease prevalence. We additionally seek SNP identified by genome-wide associations that may increase the risk of this disease. Even though the evidence available is not entirely consistent, it seems that the concentrations of choline, methionine, folate, and betaine may affect the progression of NAFLD. Since there is no effective therapy for NAFLD, further investigations into the link between nutrition, gut microbiota, genetic factors, and NAFLD are still necessary, with a particular emphasis on methyl donors.
期刊介绍:
Lifestyle Genomics aims to provide a forum for highlighting new advances in the broad area of lifestyle-gene interactions and their influence on health and disease. The journal welcomes novel contributions that investigate how genetics may influence a person’s response to lifestyle factors, such as diet and nutrition, natural health products, physical activity, and sleep, amongst others. Additionally, contributions examining how lifestyle factors influence the expression/abundance of genes, proteins and metabolites in cell and animal models as well as in humans are also of interest. The journal will publish high-quality original research papers, brief research communications, reviews outlining timely advances in the field, and brief research methods pertaining to lifestyle genomics. It will also include a unique section under the heading “Market Place” presenting articles of companies active in the area of lifestyle genomics. Research articles will undergo rigorous scientific as well as statistical/bioinformatic review to ensure excellence.