Lei Zhang, Xiufei Zhao, Zhengqiu Yuan, Ming Wu and Hu Zhou
{"title":"Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application","authors":"Lei Zhang, Xiufei Zhao, Zhengqiu Yuan, Ming Wu and Hu Zhou","doi":"10.1039/D0TA10541D","DOIUrl":null,"url":null,"abstract":"<p >Single atom catalysts (SACs) show outstanding activity and selectivity in chemical catalysis owing to their unique electronic structure and unsaturated coordination environment, in which every dispersed metal species on the support can serve as catalytic centers to achieve maximum atomic utilization efficiency. However, fabricating SACs with high atomic dispersion is still challenging owing to their extremely high surface energy. In various synthetic strategies of SACs, benefitting from the high active site density, chemoselectivity and stability, anchoring single metal atoms on oxygen defective supports has attracted increasing attention. In this review, the synthetic strategies developed to design oxygen defect-SACs with a stable structure are firstly presented. Then we highlight significant progress made in oxygen defect-stabilized single atomic catalysts with special focus on the effects of the electronic structure of oxygen defects on the stabilization of metal species. Furthermore, we summarize the characterization methods of oxygen vacancies and discuss the recent applications of as-prepared SACs with emphasis on the crucial role of strong interactions between single metal atoms and oxygen defects in the improvement of activity in heterogeneous catalysis. Finally, the key challenge and future opportunities for the development of this field are identified. We believe that this will promote the development of this fertile research area in future.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2020-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/D0TA10541D","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2021/ta/d0ta10541d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 23
Abstract
Single atom catalysts (SACs) show outstanding activity and selectivity in chemical catalysis owing to their unique electronic structure and unsaturated coordination environment, in which every dispersed metal species on the support can serve as catalytic centers to achieve maximum atomic utilization efficiency. However, fabricating SACs with high atomic dispersion is still challenging owing to their extremely high surface energy. In various synthetic strategies of SACs, benefitting from the high active site density, chemoselectivity and stability, anchoring single metal atoms on oxygen defective supports has attracted increasing attention. In this review, the synthetic strategies developed to design oxygen defect-SACs with a stable structure are firstly presented. Then we highlight significant progress made in oxygen defect-stabilized single atomic catalysts with special focus on the effects of the electronic structure of oxygen defects on the stabilization of metal species. Furthermore, we summarize the characterization methods of oxygen vacancies and discuss the recent applications of as-prepared SACs with emphasis on the crucial role of strong interactions between single metal atoms and oxygen defects in the improvement of activity in heterogeneous catalysis. Finally, the key challenge and future opportunities for the development of this field are identified. We believe that this will promote the development of this fertile research area in future.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.