{"title":"Is Hydrogen Diffusion along Grain Boundaries Fast or Slow? Atomistic Origin and Mechanistic Modeling.","authors":"Xiao Zhou, Normand Mousseau, Jun Song","doi":"10.1103/PhysRevLett.122.215501","DOIUrl":null,"url":null,"abstract":"<p><p>We perform comprehensive first-principles calculations and kinetic Monte Carlo simulations to explicitly elucidate the distinct roles of grain boundaries (GBs) in affecting hydrogen (H) diffusion in fcc nickel (Ni). We demonstrate the transition between slow and fast H diffusion along the GB with an abrupt change in H diffusivity. Low-angle GBs are shown to comprise isolated high-barrier regions to trap and inhibit H diffusion, with H diffusivity well prescribed by the classical trapping model, while high-angle GBs are shown to provide interconnected low-barrier channels to facilitate H transport. On the basis of the dislocation description of the GB and the Frank-Bilby model, the slow-fast diffusion transition is identified to result from dislocation core overlapping and is accurately predicted. The present Letter provides key mechanistic insights towards interpreting various experimental studies of H diffusion in metals, new critical knowledge for predictive modeling of H embrittlement, and better understanding of the kinetics of H and other interstitial impurities in microstructures.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"122 21","pages":"215501"},"PeriodicalIF":9.0000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1103/PhysRevLett.122.215501","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.122.215501","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 29
Abstract
We perform comprehensive first-principles calculations and kinetic Monte Carlo simulations to explicitly elucidate the distinct roles of grain boundaries (GBs) in affecting hydrogen (H) diffusion in fcc nickel (Ni). We demonstrate the transition between slow and fast H diffusion along the GB with an abrupt change in H diffusivity. Low-angle GBs are shown to comprise isolated high-barrier regions to trap and inhibit H diffusion, with H diffusivity well prescribed by the classical trapping model, while high-angle GBs are shown to provide interconnected low-barrier channels to facilitate H transport. On the basis of the dislocation description of the GB and the Frank-Bilby model, the slow-fast diffusion transition is identified to result from dislocation core overlapping and is accurately predicted. The present Letter provides key mechanistic insights towards interpreting various experimental studies of H diffusion in metals, new critical knowledge for predictive modeling of H embrittlement, and better understanding of the kinetics of H and other interstitial impurities in microstructures.
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks