Drift-diffusion models for multiple-alternative forced-choice decision making.

IF 2.3 4区 医学 Q1 Neuroscience
Alex Roxin
{"title":"Drift-diffusion models for multiple-alternative forced-choice decision making.","authors":"Alex Roxin","doi":"10.1186/s13408-019-0073-4","DOIUrl":null,"url":null,"abstract":"<p><p>The canonical computational model for the cognitive process underlying two-alternative forced-choice decision making is the so-called drift-diffusion model (DDM). In this model, a decision variable keeps track of the integrated difference in sensory evidence for two competing alternatives. Here I extend the notion of a drift-diffusion process to multiple alternatives. The competition between n alternatives takes place in a linear subspace of [Formula: see text] dimensions; that is, there are [Formula: see text] decision variables, which are coupled through correlated noise sources. I derive the multiple-alternative DDM starting from a system of coupled, linear firing rate equations. I also show that a Bayesian sequential probability ratio test for multiple alternatives is, in fact, equivalent to these same linear DDMs, but with time-varying thresholds. If the original neuronal system is nonlinear, one can once again derive a model describing a lower-dimensional diffusion process. The dynamics of the nonlinear DDM can be recast as the motion of a particle on a potential, the general form of which is given analytically for an arbitrary number of alternatives.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":"9 1","pages":"5"},"PeriodicalIF":2.3000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-019-0073-4","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-019-0073-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 18

Abstract

The canonical computational model for the cognitive process underlying two-alternative forced-choice decision making is the so-called drift-diffusion model (DDM). In this model, a decision variable keeps track of the integrated difference in sensory evidence for two competing alternatives. Here I extend the notion of a drift-diffusion process to multiple alternatives. The competition between n alternatives takes place in a linear subspace of [Formula: see text] dimensions; that is, there are [Formula: see text] decision variables, which are coupled through correlated noise sources. I derive the multiple-alternative DDM starting from a system of coupled, linear firing rate equations. I also show that a Bayesian sequential probability ratio test for multiple alternatives is, in fact, equivalent to these same linear DDMs, but with time-varying thresholds. If the original neuronal system is nonlinear, one can once again derive a model describing a lower-dimensional diffusion process. The dynamics of the nonlinear DDM can be recast as the motion of a particle on a potential, the general form of which is given analytically for an arbitrary number of alternatives.

用于多个备选方案的强制选择决策的漂移扩散模型。
两种替代强迫选择决策背后的认知过程的典型计算模型是所谓的漂移-扩散模型(DDM)。在这个模型中,一个决策变量跟踪两个竞争方案的感官证据的综合差异。在这里,我将漂移扩散过程的概念扩展到多个备选方案。n个备选方案之间的竞争发生在[公式:见正文]维度的线性子空间中;也就是说,有[公式:见正文]决策变量,它们通过相关的噪声源耦合。我从一个耦合的线性发射率方程组出发,推导出了多个备选DDM。我还表明,多个备选方案的贝叶斯序列概率比测试实际上等效于这些相同的线性DDM,但具有时变阈值。如果原始神经元系统是非线性的,则可以再次导出描述低维扩散过程的模型。非线性DDM的动力学可以重新定义为粒子在势上的运动,其一般形式是对任意数量的备选方案进行解析给出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Neuroscience
Journal of Mathematical Neuroscience Neuroscience-Neuroscience (miscellaneous)
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍: The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions. It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged. Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信