Analysis of Haematological Parameters as Predictors of Malaria Infection Using a Logistic Regression Model: A Case Study of a Hospital in the Ashanti Region of Ghana.
{"title":"Analysis of Haematological Parameters as Predictors of Malaria Infection Using a Logistic Regression Model: A Case Study of a Hospital in the Ashanti Region of Ghana.","authors":"Ellis Kobina Paintsil, Akoto Yaw Omari-Sasu, Matthew Glover Addo, Maxwell Akwasi Boateng","doi":"10.1155/2019/1486370","DOIUrl":null,"url":null,"abstract":"<p><p>Malaria is the leading cause of morbidity in Ghana representing 40-60% of outpatient hospital attendance with about 10% ending up on admission. Microscopic examination of peripheral blood film remains the most preferred and reliable method for malaria diagnosis worldwide. But the level of skills required for microscopic examination of peripheral blood film is often lacking in Ghana. This study looked at determining the extent to which haematological parameters and demographic characteristics of patients could be used to predict malaria infection using logistic regression. The overall prevalence of malaria in the study area was determined to be 25.96%; nonetheless, 45.30% of children between the ages of 5 and 14 tested positive. The binary logistic model developed for this study identified age, haemoglobin, platelet, and lymphocyte as the most significant predictors. The sensitivity and specificity of the model were 77.4% and 75.7%, respectively, with a PPV and NPV of 52.72% and 90.51%, respectively. Similar to RDT this logistic model when used will reduce the waiting time and improve the diagnosis of malaria.</p>","PeriodicalId":18089,"journal":{"name":"Malaria Research and Treatment","volume":"2019 ","pages":"1486370"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556344/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaria Research and Treatment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/1486370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria is the leading cause of morbidity in Ghana representing 40-60% of outpatient hospital attendance with about 10% ending up on admission. Microscopic examination of peripheral blood film remains the most preferred and reliable method for malaria diagnosis worldwide. But the level of skills required for microscopic examination of peripheral blood film is often lacking in Ghana. This study looked at determining the extent to which haematological parameters and demographic characteristics of patients could be used to predict malaria infection using logistic regression. The overall prevalence of malaria in the study area was determined to be 25.96%; nonetheless, 45.30% of children between the ages of 5 and 14 tested positive. The binary logistic model developed for this study identified age, haemoglobin, platelet, and lymphocyte as the most significant predictors. The sensitivity and specificity of the model were 77.4% and 75.7%, respectively, with a PPV and NPV of 52.72% and 90.51%, respectively. Similar to RDT this logistic model when used will reduce the waiting time and improve the diagnosis of malaria.
期刊介绍:
Malaria Research and Treatment is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies related to all aspects of malaria.