Eric Barbato, Hannah Mianzo, Paul Litman, Rebecca Darrah
{"title":"Dysregulation of Circadian Rhythm Gene Expression in Cystic Fibrosis Mice.","authors":"Eric Barbato, Hannah Mianzo, Paul Litman, Rebecca Darrah","doi":"10.5334/jcr.175","DOIUrl":null,"url":null,"abstract":"<p><p>Cystic fibrosis (CF) is autosomal recessive disease that affects multiple body systems. CF patients often experience sleep disturbances, altered sleep patterns, and sleep apnea. Sleep in mammals is controlled in part by circadian clock genes, including <i>Clock, Bmal1, Period1, Period2, Cryptochrome1,</i> and <i>Cryptochrome2</i>. The purpose of this study was to gain a better understanding of the biological underpinnings of disordered sleep experienced in CF. To accomplish this, we evaluated circadian clock gene expression profiles in CF and wildtype mice, divided into two subgroups each based on sleep condition. One subgroup of each genotype was permitted to maintain their sleep-wake cycle while the other was deprived of sleep for six hours prior to sacrifice. Brain, skeletal muscle, jejunum, colon, lung and adipose tissues were collected from each mouse. Quantitative polymerase chain reaction (PCR) was used to quantify expression of <i>Clock, Bmal1, Period1, Period2, Cryptochrome1</i> and <i>Cryptochrome2,</i> and expression levels were compared between study groups. Our comparisons showed distinct differences between the CF groups and the wildtype groups under both sleep conditions. Additionally, we found the CF mice that had been sleep deprived had severely dysregulated expression of all measured genes in the lung apart from <i>Cry1</i>. Our findings suggest that (1) disordered sleep in CF may be caused by circadian system dysregulation and (2) the loss of the cystic fibrosis transmembrane conductance regulator (CFTR) is a causative factor in the dysregulated circadian clock gene expression profiles of CF mice.</p>","PeriodicalId":15461,"journal":{"name":"Journal of Circadian Rhythms","volume":"17 ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6484366/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5334/jcr.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 6
Abstract
Cystic fibrosis (CF) is autosomal recessive disease that affects multiple body systems. CF patients often experience sleep disturbances, altered sleep patterns, and sleep apnea. Sleep in mammals is controlled in part by circadian clock genes, including Clock, Bmal1, Period1, Period2, Cryptochrome1, and Cryptochrome2. The purpose of this study was to gain a better understanding of the biological underpinnings of disordered sleep experienced in CF. To accomplish this, we evaluated circadian clock gene expression profiles in CF and wildtype mice, divided into two subgroups each based on sleep condition. One subgroup of each genotype was permitted to maintain their sleep-wake cycle while the other was deprived of sleep for six hours prior to sacrifice. Brain, skeletal muscle, jejunum, colon, lung and adipose tissues were collected from each mouse. Quantitative polymerase chain reaction (PCR) was used to quantify expression of Clock, Bmal1, Period1, Period2, Cryptochrome1 and Cryptochrome2, and expression levels were compared between study groups. Our comparisons showed distinct differences between the CF groups and the wildtype groups under both sleep conditions. Additionally, we found the CF mice that had been sleep deprived had severely dysregulated expression of all measured genes in the lung apart from Cry1. Our findings suggest that (1) disordered sleep in CF may be caused by circadian system dysregulation and (2) the loss of the cystic fibrosis transmembrane conductance regulator (CFTR) is a causative factor in the dysregulated circadian clock gene expression profiles of CF mice.
期刊介绍:
Journal of Circadian Rhythms is an Open Access, peer-reviewed online journal that publishes research articles dealing with circadian and nycthemeral (daily) rhythms in living organisms, including processes associated with photoperiodism and daily torpor. Journal of Circadian Rhythms aims to include both basic and applied research at any level of biological organization (molecular, cellular, organic, organismal, and populational). Studies of daily rhythms in environmental factors that directly affect circadian rhythms are also pertinent to the journal"s mission.