Zhongye Xie, Yan Tang, Jinhua Feng, Junbo Liu, Song Hu
{"title":"Accurate surface profilometry using differential optical sectioning microscopy with structured illumination.","authors":"Zhongye Xie, Yan Tang, Jinhua Feng, Junbo Liu, Song Hu","doi":"10.1364/OE.27.011721","DOIUrl":null,"url":null,"abstract":"<p><p>A differential optical sectioning microscopy with structured-illumination (DOSM-SI) with enhanced axial precision is explored in this paper for three-dimensional (3D) measurement. As the segment of data on the linear region of the contrast depth response curve (CDR) is very sensitive to variation of the height information, the DOSM-SI introduces a new CDR2 with an axial shift to intersect the linear region of the CDR1, which is achieved by using two charge-coupled detectors (CCDs) in the optical path. The CCD1 is located on the imaging plane and the CCD2 is displaced from the imaging plane. The difference between the CDR1 and CDR2 for each pixel is defined as the differential depth response curve (DCDR). Further, the zero-crossing point of the DCDR for each pixel is accurately extracted using the line-fitting technique, and finally, the sample surface can be reconstructed with a high resolution and precision. Since the slope around the zero-crossing point of the DCDR is apparently larger than that of near the focal position, an enhanced resolution and precision can be realized in DOSM-SI. The experiments and theoretical analysis are elaborated to demonstrate the feasibility of DOSM-SI.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"27 8","pages":"11721-11733"},"PeriodicalIF":3.2000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.27.011721","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 10
Abstract
A differential optical sectioning microscopy with structured-illumination (DOSM-SI) with enhanced axial precision is explored in this paper for three-dimensional (3D) measurement. As the segment of data on the linear region of the contrast depth response curve (CDR) is very sensitive to variation of the height information, the DOSM-SI introduces a new CDR2 with an axial shift to intersect the linear region of the CDR1, which is achieved by using two charge-coupled detectors (CCDs) in the optical path. The CCD1 is located on the imaging plane and the CCD2 is displaced from the imaging plane. The difference between the CDR1 and CDR2 for each pixel is defined as the differential depth response curve (DCDR). Further, the zero-crossing point of the DCDR for each pixel is accurately extracted using the line-fitting technique, and finally, the sample surface can be reconstructed with a high resolution and precision. Since the slope around the zero-crossing point of the DCDR is apparently larger than that of near the focal position, an enhanced resolution and precision can be realized in DOSM-SI. The experiments and theoretical analysis are elaborated to demonstrate the feasibility of DOSM-SI.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.