Minimum Inhibitory Concentration of Glyphosate and a Glyphosate-Containing Herbicide in Salmonella enterica Isolates Originating from Different Time Periods, Hosts, and Serovars.
Judith Pöppe, Katrin Bote, Roswitha Merle, Olga Makarova, Uwe Roesler
{"title":"Minimum Inhibitory Concentration of Glyphosate and a Glyphosate-Containing Herbicide in Salmonella enterica Isolates Originating from Different Time Periods, Hosts, and Serovars.","authors":"Judith Pöppe, Katrin Bote, Roswitha Merle, Olga Makarova, Uwe Roesler","doi":"10.1556/1886.2019.00005","DOIUrl":null,"url":null,"abstract":"<p><p>Glyphosate, the active compound of Roundup, is one of the most used pesticides in the world. Its residues are often detected in animal feed, but the impact on the animal gut microbiota and on pathogens of the intestine has not intensively been investigated. In this study, we analyzed the minimum inhibitory concentration (MIC) of glyphosate isopropylamine salt and a common glyphosate-containing herbicide formulation in 225 <i>Salmonella enterica</i> isolates by broth microdilution. A bacteriostatic effect of glyphosate on <i>Salmonella</i> growth was detected at the concentration range of 10 to 80 mg/mL for both the active ingredient and the ready-to-use formulation. Time/year of isolation, host species, and serovars revealed a statistically significant influence on MIC values. Recently collected <i>Salmonella</i> isolates had significantly higher MIC values for glyphosate and the glyphosate-containing product compared with isolates collected between 1981 and 1990. Isolates from pigs showed significantly higher MIC values compared with isolates from poultry, and isolates of the <i>Salmonella</i> serovar Typhimurium had significantly higher MIC values than <i>Salmonella</i> Enteritidis and Infantis isolates.</p>","PeriodicalId":11929,"journal":{"name":"European Journal of Microbiology & Immunology","volume":"9 2","pages":"35-41"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1556/1886.2019.00005","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Microbiology & Immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1886.2019.00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/3 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Glyphosate, the active compound of Roundup, is one of the most used pesticides in the world. Its residues are often detected in animal feed, but the impact on the animal gut microbiota and on pathogens of the intestine has not intensively been investigated. In this study, we analyzed the minimum inhibitory concentration (MIC) of glyphosate isopropylamine salt and a common glyphosate-containing herbicide formulation in 225 Salmonella enterica isolates by broth microdilution. A bacteriostatic effect of glyphosate on Salmonella growth was detected at the concentration range of 10 to 80 mg/mL for both the active ingredient and the ready-to-use formulation. Time/year of isolation, host species, and serovars revealed a statistically significant influence on MIC values. Recently collected Salmonella isolates had significantly higher MIC values for glyphosate and the glyphosate-containing product compared with isolates collected between 1981 and 1990. Isolates from pigs showed significantly higher MIC values compared with isolates from poultry, and isolates of the Salmonella serovar Typhimurium had significantly higher MIC values than Salmonella Enteritidis and Infantis isolates.