Engineering of L-Plastin Peptide-Loaded Biodegradable Nanoparticles for Sustained Delivery and Suppression of Osteoclast Function In Vitro.

Q3 Biochemistry, Genetics and Molecular Biology
International Journal of Cell Biology Pub Date : 2019-05-05 eCollection Date: 2019-01-01 DOI:10.1155/2019/6943986
Sunipa Majumdar, Aniket S Wadajkar, Hanan Aljohani, Mark A Reynolds, Anthony J Kim, Meenakshi Chellaiah
{"title":"Engineering of L-Plastin Peptide-Loaded Biodegradable Nanoparticles for Sustained Delivery and Suppression of Osteoclast Function In Vitro.","authors":"Sunipa Majumdar,&nbsp;Aniket S Wadajkar,&nbsp;Hanan Aljohani,&nbsp;Mark A Reynolds,&nbsp;Anthony J Kim,&nbsp;Meenakshi Chellaiah","doi":"10.1155/2019/6943986","DOIUrl":null,"url":null,"abstract":"<p><p>We have recently demonstrated that a small molecular weight amino-terminal peptide of L-plastin (10 amino acids; \"MARGSVSDEE\") suppressed the phosphorylation of endogenous L-plastin. Therefore, the formation of nascent sealing zones (NSZs) and bone resorption are reduced. The aim of this study was to develop a biodegradable and biocompatible PLGA nanocarrier that could be loaded with the L-plastin peptide of interest and determine the efficacy <i>in vitro</i> in osteoclast cultures. L-plastin MARGSVSDEE (P1) and scrambled control (P3) peptide-loaded PLGA-PEG nanoparticles (NP1 and NP3, respectively) were synthesized by double emulsion technique. The biological effect of nanoparticles on osteoclasts was evaluated by immunoprecipitation, immunoblotting, rhodamine-phalloidin staining of actin filaments, and pit forming assays. Physical characterization of well-dispersed NP1 and NP3 demonstrated ~130-150 nm size, < 0.07 polydispersity index, ~-3 mV <i>ζ</i>-potential, and a sustained release of the peptide for three weeks. Biological characterization in osteoclast cultures demonstrated the following: NP1 significantly reduced (a) endogenous L-plastin phosphorylation; (b) formation of NSZs and sealing rings; (c) resorption. However, the assembly of podosomes which are critical for cell adhesion was not affected. L-plastin peptide-loaded PLGA-PEG nanocarriers have promising potential for the treatment of diseases associated with bone loss. Future studies will use this sustained release of peptide strategy to systematically suppress osteoclast bone resorption activity <i>in vivo</i> in mouse models demonstrating bone loss.</p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2019 ","pages":"6943986"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/6943986","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/6943986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8

Abstract

We have recently demonstrated that a small molecular weight amino-terminal peptide of L-plastin (10 amino acids; "MARGSVSDEE") suppressed the phosphorylation of endogenous L-plastin. Therefore, the formation of nascent sealing zones (NSZs) and bone resorption are reduced. The aim of this study was to develop a biodegradable and biocompatible PLGA nanocarrier that could be loaded with the L-plastin peptide of interest and determine the efficacy in vitro in osteoclast cultures. L-plastin MARGSVSDEE (P1) and scrambled control (P3) peptide-loaded PLGA-PEG nanoparticles (NP1 and NP3, respectively) were synthesized by double emulsion technique. The biological effect of nanoparticles on osteoclasts was evaluated by immunoprecipitation, immunoblotting, rhodamine-phalloidin staining of actin filaments, and pit forming assays. Physical characterization of well-dispersed NP1 and NP3 demonstrated ~130-150 nm size, < 0.07 polydispersity index, ~-3 mV ζ-potential, and a sustained release of the peptide for three weeks. Biological characterization in osteoclast cultures demonstrated the following: NP1 significantly reduced (a) endogenous L-plastin phosphorylation; (b) formation of NSZs and sealing rings; (c) resorption. However, the assembly of podosomes which are critical for cell adhesion was not affected. L-plastin peptide-loaded PLGA-PEG nanocarriers have promising potential for the treatment of diseases associated with bone loss. Future studies will use this sustained release of peptide strategy to systematically suppress osteoclast bone resorption activity in vivo in mouse models demonstrating bone loss.

Abstract Image

Abstract Image

Abstract Image

l -活质肽负载的可生物降解纳米颗粒在体外持续递送和抑制破骨细胞功能的工程研究。
我们最近证明了l -活素的一个小分子量氨基末端肽(10个氨基酸;“MARGSVSDEE”)抑制内源性L-plastin的磷酸化。因此,新生封闭区(NSZs)的形成和骨吸收减少。本研究的目的是开发一种可生物降解和生物相容性的PLGA纳米载体,可以装载感兴趣的L-plastin肽,并确定其在体外破骨细胞培养中的效果。采用双乳法制备L-plastin MARGSVSDEE (P1)和混杂对照(P3)肽负载PLGA-PEG纳米颗粒(NP1和NP3)。通过免疫沉淀、免疫印迹、罗丹明-phalloidin染色肌动蛋白细丝和窝形成实验来评估纳米颗粒对破骨细胞的生物学效应。物理表征表明,分散良好的NP1和NP3的尺寸为~130 ~ 150nm,多分散指数< 0.07,ζ电位为~-3 mV,缓释时间为3周。破骨细胞培养的生物学特性表明:NP1显著降低(a)内源性L-plastin磷酸化;(b)形成非安全区域和密封圈;(c)吸收。然而,对细胞粘附至关重要的足质体的组装没有受到影响。l -活素肽负载的PLGA-PEG纳米载体在治疗骨质流失相关疾病方面具有广阔的潜力。未来的研究将使用这种持续释放肽的策略来系统地抑制破骨细胞骨吸收活性,在小鼠模型中显示骨质流失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Cell Biology
International Journal of Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
3.30
自引率
0.00%
发文量
4
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信