Formate hydrogenlyase: A group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase.

2区 生物学 Q1 Biochemistry, Genetics and Molecular Biology
Advances in Microbial Physiology Pub Date : 2019-01-01 Epub Date: 2019-02-28 DOI:10.1016/bs.ampbs.2019.02.004
Alexander J Finney, Frank Sargent
{"title":"Formate hydrogenlyase: A group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase.","authors":"Alexander J Finney,&nbsp;Frank Sargent","doi":"10.1016/bs.ampbs.2019.02.004","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogenase enzymes are currently under the international research spotlight due to emphasis on biologically produced hydrogen as one potential energy carrier to relinquish the requirement for 'fossil fuel' derived energy. Three major classes of hydrogenase exist in microbes all able to catalyze the reversible oxidation of dihydrogen to protons and electrons. These classes are defined by their active site metal content: [NiFe]-; [FeFe]- and [Fe]-hydrogenases. Of these the [NiFe]-hydrogenases have links to ancient forms of metabolism, utilizing hydrogen as the original source of reductant on Earth. This review progresses to highlight the Group 4 [NiFe]-hydrogenase enzymes that preferentially generate hydrogen exploiting various partner enzymes or ferredoxin, while in some cases translocating ions across biological membranes. Specific focus is paid to Group 4A, the Formate hydrogenlyase complexes. These are the combination of a six or nine subunit [NiFe]-hydrogenase with a soluble formate dehydrogenase to derived electrons from formate oxidation for proton reduction. The incidence, physiology, structure and biotechnological application of these complexes will be explored with attention on Escherichia coli Formate Hydrogenlyase-1 (FHL-1).</p>","PeriodicalId":50953,"journal":{"name":"Advances in Microbial Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.ampbs.2019.02.004","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Microbial Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2019.02.004","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 14

Abstract

Hydrogenase enzymes are currently under the international research spotlight due to emphasis on biologically produced hydrogen as one potential energy carrier to relinquish the requirement for 'fossil fuel' derived energy. Three major classes of hydrogenase exist in microbes all able to catalyze the reversible oxidation of dihydrogen to protons and electrons. These classes are defined by their active site metal content: [NiFe]-; [FeFe]- and [Fe]-hydrogenases. Of these the [NiFe]-hydrogenases have links to ancient forms of metabolism, utilizing hydrogen as the original source of reductant on Earth. This review progresses to highlight the Group 4 [NiFe]-hydrogenase enzymes that preferentially generate hydrogen exploiting various partner enzymes or ferredoxin, while in some cases translocating ions across biological membranes. Specific focus is paid to Group 4A, the Formate hydrogenlyase complexes. These are the combination of a six or nine subunit [NiFe]-hydrogenase with a soluble formate dehydrogenase to derived electrons from formate oxidation for proton reduction. The incidence, physiology, structure and biotechnological application of these complexes will be explored with attention on Escherichia coli Formate Hydrogenlyase-1 (FHL-1).

甲酸氢解酶:与甲酸脱氢酶串联的第4组[NiFe]氢化酶。
氢化酶目前受到国际研究的关注,因为它强调生物产生的氢作为一种潜在的能量载体,以放弃对“化石燃料”衍生能源的需求。微生物中存在三种主要的氢化酶,它们都能催化二氢可逆氧化为质子和电子。这些类别由它们的活性位金属含量来定义:[NiFe]-;[Fe]-和[Fe]-氢化酶。其中[NiFe]-氢化酶与古老的代谢形式有关,利用氢作为地球上还原剂的原始来源。这篇综述进一步强调了第4组[NiFe]-氢化酶,它优先利用各种伙伴酶或铁氧还蛋白产生氢,同时在某些情况下跨生物膜转运离子。特别关注4A组,甲酸氢解酶复合物。这些是6或9亚基[NiFe]氢化酶与可溶性甲酸脱氢酶的结合,从甲酸氧化中获得电子以进行质子还原。本文将重点对大肠杆菌甲酸氢解酶-1 (Escherichia coli Formate Hydrogenlyase-1, FHL-1)的发生、生理、结构和生物技术应用进行探讨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Microbial Physiology
Advances in Microbial Physiology 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
16
期刊介绍: Advances in Microbial Physiology publishes topical and important reviews, interpreting physiology to include all material that contributes to our understanding of how microorganisms and their component parts work. First published in 1967, the editors have always striven to interpret microbial physiology in the broadest context and have never restricted the contents to traditional views of whole cell physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信