Brain Tumor Segmentation Based on Hybrid Clustering and Morphological Operations.

IF 3.3 Q2 ENGINEERING, BIOMEDICAL
International Journal of Biomedical Imaging Pub Date : 2019-04-09 eCollection Date: 2019-01-01 DOI:10.1155/2019/7305832
Chong Zhang, Xuanjing Shen, Hang Cheng, Qingji Qian
{"title":"Brain Tumor Segmentation Based on Hybrid Clustering and Morphological Operations.","authors":"Chong Zhang,&nbsp;Xuanjing Shen,&nbsp;Hang Cheng,&nbsp;Qingji Qian","doi":"10.1155/2019/7305832","DOIUrl":null,"url":null,"abstract":"<p><p>Inference of tumor and edema areas from brain magnetic resonance imaging (MRI) data remains challenging owing to the complex structure of brain tumors, blurred boundaries, and external factors such as noise. To alleviate noise sensitivity and improve the stability of segmentation, an effective hybrid clustering algorithm combined with morphological operations is proposed for segmenting brain tumors in this paper. The main contributions of the paper are as follows: firstly, adaptive Wiener filtering is utilized for denoising, and morphological operations are used for removing nonbrain tissue, effectively reducing the method's sensitivity to noise. Secondly, K-means++ clustering is combined with the Gaussian kernel-based fuzzy C-means algorithm to segment images. This clustering not only improves the algorithm's stability, but also reduces the sensitivity of clustering parameters. Finally, the extracted tumor images are postprocessed using morphological operations and median filtering to obtain accurate representations of brain tumors. In addition, the proposed algorithm was compared with other current segmentation algorithms. The results show that the proposed algorithm performs better in terms of accuracy, sensitivity, specificity, and recall.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2019-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2019/7305832","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2019/7305832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 43

Abstract

Inference of tumor and edema areas from brain magnetic resonance imaging (MRI) data remains challenging owing to the complex structure of brain tumors, blurred boundaries, and external factors such as noise. To alleviate noise sensitivity and improve the stability of segmentation, an effective hybrid clustering algorithm combined with morphological operations is proposed for segmenting brain tumors in this paper. The main contributions of the paper are as follows: firstly, adaptive Wiener filtering is utilized for denoising, and morphological operations are used for removing nonbrain tissue, effectively reducing the method's sensitivity to noise. Secondly, K-means++ clustering is combined with the Gaussian kernel-based fuzzy C-means algorithm to segment images. This clustering not only improves the algorithm's stability, but also reduces the sensitivity of clustering parameters. Finally, the extracted tumor images are postprocessed using morphological operations and median filtering to obtain accurate representations of brain tumors. In addition, the proposed algorithm was compared with other current segmentation algorithms. The results show that the proposed algorithm performs better in terms of accuracy, sensitivity, specificity, and recall.

Abstract Image

Abstract Image

Abstract Image

基于混合聚类和形态学运算的脑肿瘤分割。
由于脑肿瘤结构复杂、边界模糊以及噪声等外部因素,从脑磁共振成像(MRI)数据推断肿瘤和水肿区域仍然具有挑战性。为了降低噪声敏感性,提高分割的稳定性,本文提出了一种有效的结合形态学运算的混合聚类算法来分割脑肿瘤。本文的主要贡献如下:首先,利用自适应维纳滤波去噪,并利用形态学运算去除非脑组织,有效地降低了方法对噪声的敏感性。其次,将K-means++聚类与基于高斯核的模糊C-均值算法相结合,对图像进行分割。这种聚类不仅提高了算法的稳定性,而且降低了聚类参数的敏感性。最后,使用形态学运算和中值滤波对提取的肿瘤图像进行后处理,以获得脑肿瘤的准确表示。此外,还将该算法与现有的其他分割算法进行了比较。结果表明,该算法在准确性、敏感性、特异性和召回率方面都有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
11
审稿时长
20 weeks
期刊介绍: The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to): Digital radiography and tomosynthesis X-ray computed tomography (CT) Magnetic resonance imaging (MRI) Single photon emission computed tomography (SPECT) Positron emission tomography (PET) Ultrasound imaging Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography Neutron imaging for biomedical applications Magnetic and optical spectroscopy, and optical biopsy Optical, electron, scanning tunneling/atomic force microscopy Small animal imaging Functional, cellular, and molecular imaging Imaging assays for screening and molecular analysis Microarray image analysis and bioinformatics Emerging biomedical imaging techniques Imaging modality fusion Biomedical imaging instrumentation Biomedical image processing, pattern recognition, and analysis Biomedical image visualization, compression, transmission, and storage Imaging and modeling related to systems biology and systems biomedicine Applied mathematics, applied physics, and chemistry related to biomedical imaging Grid-enabling technology for biomedical imaging and informatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信