{"title":"Fast Biodegradation of Diesel Hydrocarbons at High Concentration by the Sophorolipid-Producing Yeast Candida catenulata KP324968.","authors":"Faezeh Babaei, Alireza Habibi","doi":"10.1159/000496797","DOIUrl":null,"url":null,"abstract":"<p><p>In the last decades, biodegradation as an environmentally friendly approach has raised interest in connection with the removal of hydrocarbon pollutants. Its capacity for removing pollutants strongly depends on the type of living cell and environmental conditions. The degradative activity of a new sophorolipid-producing yeast, Candida catenulata KP324968, in the removal of high concentrations of diesel from effluents was statistically evaluated considering the initial pH, the agitation speed, and the initial diesel concentration. The optimal setting of the operational variables at an initial pH of 4.7, an agitation speed of 204 rpm, and an initial diesel concentration of 93.4 g L-1 resulted in the highest total petroleum hydrocarbon removal efficiency: about 82.1% after 6 days (biodegradation rate: 0.378 g gcell-1 h-1). During the cell growth phase, the emulsification index in the medium increased and reached its highest level at 64.6% after 48 h. Further tests indicated that the emulsification capacity was obtained by in situ production of two sophorolipid molecules with an m/z of 533 and 583. In summary, its effective diesel removal and high emulsification capacity makes C. catenulata KP324968 an attractive candidate yeast for the degradation of hydrocarbons from aqueous environments.</p>","PeriodicalId":16370,"journal":{"name":"Journal of Molecular Microbiology and Biotechnology","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000496797","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000496797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 10
Abstract
In the last decades, biodegradation as an environmentally friendly approach has raised interest in connection with the removal of hydrocarbon pollutants. Its capacity for removing pollutants strongly depends on the type of living cell and environmental conditions. The degradative activity of a new sophorolipid-producing yeast, Candida catenulata KP324968, in the removal of high concentrations of diesel from effluents was statistically evaluated considering the initial pH, the agitation speed, and the initial diesel concentration. The optimal setting of the operational variables at an initial pH of 4.7, an agitation speed of 204 rpm, and an initial diesel concentration of 93.4 g L-1 resulted in the highest total petroleum hydrocarbon removal efficiency: about 82.1% after 6 days (biodegradation rate: 0.378 g gcell-1 h-1). During the cell growth phase, the emulsification index in the medium increased and reached its highest level at 64.6% after 48 h. Further tests indicated that the emulsification capacity was obtained by in situ production of two sophorolipid molecules with an m/z of 533 and 583. In summary, its effective diesel removal and high emulsification capacity makes C. catenulata KP324968 an attractive candidate yeast for the degradation of hydrocarbons from aqueous environments.
期刊介绍:
We are entering a new and exciting era of microbiological study and application. Recent advances in the now established disciplines of genomics, proteomics and bioinformatics, together with extensive cooperation between academic and industrial concerns have brought about an integration of basic and applied microbiology as never before.