Apostolos Malatras, Stephanie Duguez, William Duddy
{"title":"Muscle Gene Sets: a versatile methodological aid to functional genomics in the neuromuscular field.","authors":"Apostolos Malatras, Stephanie Duguez, William Duddy","doi":"10.1186/s13395-019-0196-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The approach of building large collections of gene sets and then systematically testing hypotheses across these collections is a powerful tool in functional genomics, both in the pathway analysis of omics data and to uncover the polygenic effects associated with complex diseases in genome-wide association study. The Molecular Signatures Database includes collections of oncogenic and immunologic signatures enabling researchers to compare transcriptional datasets across hundreds of previous studies and leading to important insights in these fields, but such a resource does not currently exist for neuromuscular research. In previous work, we have shown the utility of gene set approaches to understand muscle cell physiology and pathology.</p><p><strong>Methods: </strong>Following a systematic survey of public muscle data, we passed gene expression profiles from 4305 samples through a robust pre-processing and standardized data analysis pipeline. Two hundred eighty-two samples were discarded based on a battery of rigorous global quality controls. From among the remaining studies, 578 comparisons of interest were identified by a combination of text mining and manual curation of the study meta-data. For each comparison, significantly dysregulated genes (FDR adjusted p < 0.05) were identified.</p><p><strong>Results: </strong>Lists of dysregulated genes were divided between upregulated and downregulated to give 1156 Muscle Gene Sets (MGS). This resource is available for download ( www.sys-myo.com/muscle_gene_sets ) and is accessible through three commonly used functional genomics platforms (GSEA, EnrichR, and WebGestalt). Basic guidance and recommendations are provided for the use of MGS through these platforms. In addition, consensus muscle gene sets were created to capture the overlap between the results of similar studies, and analysis of these highlighted the potential for novel disease-relevant findings.</p><p><strong>Conclusions: </strong>The MGS resource can be used to investigate the behaviour of any list of genes across previous comparisons of muscle conditions, to compare previous studies to one another, and to explore the functional relationship of muscle dysregulation to the Gene Ontology. Its major intended use is in enrichment testing for functional genomics analysis.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":"9 1","pages":"10"},"PeriodicalIF":5.3000,"publicationDate":"2019-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13395-019-0196-z","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-019-0196-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 8
Abstract
Background: The approach of building large collections of gene sets and then systematically testing hypotheses across these collections is a powerful tool in functional genomics, both in the pathway analysis of omics data and to uncover the polygenic effects associated with complex diseases in genome-wide association study. The Molecular Signatures Database includes collections of oncogenic and immunologic signatures enabling researchers to compare transcriptional datasets across hundreds of previous studies and leading to important insights in these fields, but such a resource does not currently exist for neuromuscular research. In previous work, we have shown the utility of gene set approaches to understand muscle cell physiology and pathology.
Methods: Following a systematic survey of public muscle data, we passed gene expression profiles from 4305 samples through a robust pre-processing and standardized data analysis pipeline. Two hundred eighty-two samples were discarded based on a battery of rigorous global quality controls. From among the remaining studies, 578 comparisons of interest were identified by a combination of text mining and manual curation of the study meta-data. For each comparison, significantly dysregulated genes (FDR adjusted p < 0.05) were identified.
Results: Lists of dysregulated genes were divided between upregulated and downregulated to give 1156 Muscle Gene Sets (MGS). This resource is available for download ( www.sys-myo.com/muscle_gene_sets ) and is accessible through three commonly used functional genomics platforms (GSEA, EnrichR, and WebGestalt). Basic guidance and recommendations are provided for the use of MGS through these platforms. In addition, consensus muscle gene sets were created to capture the overlap between the results of similar studies, and analysis of these highlighted the potential for novel disease-relevant findings.
Conclusions: The MGS resource can be used to investigate the behaviour of any list of genes across previous comparisons of muscle conditions, to compare previous studies to one another, and to explore the functional relationship of muscle dysregulation to the Gene Ontology. Its major intended use is in enrichment testing for functional genomics analysis.
期刊介绍:
The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators.
Main areas of interest include:
-differentiation of skeletal muscle-
atrophy and hypertrophy of skeletal muscle-
aging of skeletal muscle-
regeneration and degeneration of skeletal muscle-
biology of satellite and satellite-like cells-
dystrophic degeneration of skeletal muscle-
energy and glucose homeostasis in skeletal muscle-
non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies-
maintenance of neuromuscular junctions-
roles of ryanodine receptors and calcium signaling in skeletal muscle-
roles of nuclear receptors in skeletal muscle-
roles of GPCRs and GPCR signaling in skeletal muscle-
other relevant aspects of skeletal muscle biology.
In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission.
Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.