Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability†

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Xiaoyan Zhou, Xiaogang Li, Zhuo Li, Huixin Xie, Jialong Fu, Lu Wei, Hui Yang and Xin Guo
{"title":"Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability†","authors":"Xiaoyan Zhou, Xiaogang Li, Zhuo Li, Huixin Xie, Jialong Fu, Lu Wei, Hui Yang and Xin Guo","doi":"10.1039/D1TA04631D","DOIUrl":null,"url":null,"abstract":"<p >Electrolytes with a high ionic transference number hold great promise for reducing battery polarization and achieving safe energy storage. Herein, single-ion electrolytes containing α-LiAlO<small><sub>2</sub></small>@γ-Al<small><sub>2</sub></small>O<small><sub>3</sub></small> nanosheets as fillers in PVDF-HFP are prepared. The α-LiAlO<small><sub>2</sub></small>@γ-Al<small><sub>2</sub></small>O<small><sub>3</sub></small> nanosheets show excellent anion-anchoring ability due to the high adsorption energy to anions on the surfaces, leading to a remarkable lithium-ion (Li<small><sup>+</sup></small>) transference number of 0.92 and a great ionic conductivity of 0.85 mS cm<small><sup>?1</sup></small> at room temperature. Such a high Li<small><sup>+</sup></small> transference number effectively alleviates the concentration gradient polarization, improves the homogeneous Li<small><sup>+</sup></small> deposition, and suppresses the Li dendrite growth. As a result, the symmetric Li‖Li cell realizes superior interfacial stability and dendrite suppression capability for 1000 h at a current density of 0.5 mA cm<small><sup>?2</sup></small>. Moreover, the LiNi<small><sub>0.85</sub></small>Co<small><sub>0.05</sub></small>Al<small><sub>0.1</sub></small>O<small><sub>2</sub></small>‖Li and LiFePO<small><sub>4</sub></small>‖Li batteries with the electrolyte demonstrate significantly improved specific capacities and excellent cycling durabilities at high rates. Especially, the LiFePO<small><sub>4</sub></small>‖Li battery exhibits a capacity retention of 88% over 2000 charge/discharge cycles at a rate of 2C. This work offers a strategy for designing single-ion electrolytes toward high-performance energy storage.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 34","pages":" 18239-18246"},"PeriodicalIF":9.5000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2021/ta/d1ta04631d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 11

Abstract

Electrolytes with a high ionic transference number hold great promise for reducing battery polarization and achieving safe energy storage. Herein, single-ion electrolytes containing α-LiAlO2@γ-Al2O3 nanosheets as fillers in PVDF-HFP are prepared. The α-LiAlO2@γ-Al2O3 nanosheets show excellent anion-anchoring ability due to the high adsorption energy to anions on the surfaces, leading to a remarkable lithium-ion (Li+) transference number of 0.92 and a great ionic conductivity of 0.85 mS cm?1 at room temperature. Such a high Li+ transference number effectively alleviates the concentration gradient polarization, improves the homogeneous Li+ deposition, and suppresses the Li dendrite growth. As a result, the symmetric Li‖Li cell realizes superior interfacial stability and dendrite suppression capability for 1000 h at a current density of 0.5 mA cm?2. Moreover, the LiNi0.85Co0.05Al0.1O2‖Li and LiFePO4‖Li batteries with the electrolyte demonstrate significantly improved specific capacities and excellent cycling durabilities at high rates. Especially, the LiFePO4‖Li battery exhibits a capacity retention of 88% over 2000 charge/discharge cycles at a rate of 2C. This work offers a strategy for designing single-ion electrolytes toward high-performance energy storage.

Abstract Image

混合电解质具有超高锂离子转移数的锂金属电池具有快速和稳定的充电/放电能力†
具有高离子转移数的电解质在减少电池极化和实现安全储能方面具有很大的前景。本文制备了以α-LiAlO2@γ-Al2O3纳米片为填料的PVDF-HFP单离子电解质。α-LiAlO2@γ-Al2O3纳米片由于对表面阴离子具有较高的吸附能,表现出优异的阴离子锚定能力,导致锂离子(Li+)转移数达到0.92,离子电导率达到0.85 mS cm?1在室温下。如此高的Li+转移数有效地缓解了浓度梯度极化,改善了Li+的均匀沉积,抑制了Li枝晶的生长。因此,对称Li‖锂电池在0.5 mA cm?2的电流密度下实现了优越的界面稳定性和1000小时的枝晶抑制能力。此外,使用该电解质的LiNi0.85Co0.05Al0.1O2‖锂电池和LiFePO4‖锂电池在高倍率下表现出显着提高的比容量和出色的循环耐久性。特别是,LiFePO4‖锂电池在2000次充电/放电循环中以2C的速率显示出88%的容量保持率。这项工作为设计高性能能量存储的单离子电解质提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信