{"title":"ARL3 is downregulated and acts as a prognostic biomarker in glioma.","authors":"Yulin Wang, Weijiang Zhao, Xin Liu, Gefei Guan, Minghua Zhuang","doi":"10.1186/s12967-019-1914-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Glioma is the most common primary malignant brain tumor in adults with a poor prognosis. ARL3 is a member of the ARF family, and plays a key role in ciliary function and lipid-modified protein trafficking. ARL3 has been reported to be involved in ciliary diseases, in which it affects kidney and photoreceptor development. However, the functional role of ARL3 in cancer remains unknown. In this study, we aimed to explore ARL3 expression and its roles in glioma prognosis.</p><p><strong>Methods: </strong>RT-PCR and immunohistochemistry were performed to examine the expression level of ARL3 in glioma samples. Data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and Repository for Molecular Brain Neoplasia Data (REMBRANDT) databases were employed to investigate ARL3 expression and its roles in glioma prognosis. A nomogram for predicting 3- or 5-year survival was established using Cox proportional hazards regression. Finally, gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were performed to explore the biological function.</p><p><strong>Results: </strong>ARL3 expression was downregulated in glioma, and associated with poor prognosis in glioma patients. The C-indexes, areas under the ROC curve and calibration plots of the nomogram indicated an effective predictive performance for glioma patients. In addition, GO and pathway analyses suggested the involvement of ARL3 in angiogenesis and immune cell infiltration in the microenvironment.</p><p><strong>Conclusions: </strong>Low ARL3 expression predicted poor prognosis and contributed to antiangiogenesis and the proportion of infiltrating immune cells in the GBM microenvironment. Thus, ARL3 may be a prognostic marker and therapeutic target for glioma.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12967-019-1914-3","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-019-1914-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 19
Abstract
Background: Glioma is the most common primary malignant brain tumor in adults with a poor prognosis. ARL3 is a member of the ARF family, and plays a key role in ciliary function and lipid-modified protein trafficking. ARL3 has been reported to be involved in ciliary diseases, in which it affects kidney and photoreceptor development. However, the functional role of ARL3 in cancer remains unknown. In this study, we aimed to explore ARL3 expression and its roles in glioma prognosis.
Methods: RT-PCR and immunohistochemistry were performed to examine the expression level of ARL3 in glioma samples. Data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA) and Repository for Molecular Brain Neoplasia Data (REMBRANDT) databases were employed to investigate ARL3 expression and its roles in glioma prognosis. A nomogram for predicting 3- or 5-year survival was established using Cox proportional hazards regression. Finally, gene ontology (GO) analysis, gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were performed to explore the biological function.
Results: ARL3 expression was downregulated in glioma, and associated with poor prognosis in glioma patients. The C-indexes, areas under the ROC curve and calibration plots of the nomogram indicated an effective predictive performance for glioma patients. In addition, GO and pathway analyses suggested the involvement of ARL3 in angiogenesis and immune cell infiltration in the microenvironment.
Conclusions: Low ARL3 expression predicted poor prognosis and contributed to antiangiogenesis and the proportion of infiltrating immune cells in the GBM microenvironment. Thus, ARL3 may be a prognostic marker and therapeutic target for glioma.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.