{"title":"<i>Fusarium graminearum</i> Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management.","authors":"Yun Chen, H Corby Kistler, Zhonghua Ma","doi":"10.1146/annurev-phyto-082718-100318","DOIUrl":null,"url":null,"abstract":"<p><p>Fusarium head blight (FHB) of small grain cereals caused by <i>Fusarium graminearum</i> and other <i>Fusarium</i> species is an economically important plant disease worldwide. <i>Fusarium</i> infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of <i>F. graminearum</i>, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic <i>TRI</i> genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"57 ","pages":"15-39"},"PeriodicalIF":9.1000,"publicationDate":"2019-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-phyto-082718-100318","citationCount":"179","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-phyto-082718-100318","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/3/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 179
Abstract
Fusarium head blight (FHB) of small grain cereals caused by Fusarium graminearum and other Fusarium species is an economically important plant disease worldwide. Fusarium infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of F. graminearum, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic TRI genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.
期刊介绍:
The Annual Review of Phytopathology, established in 1963, covers major advancements in plant pathology, including plant disease diagnosis, pathogens, host-pathogen Interactions, epidemiology and ecology, breeding for resistance and plant disease management, and includes a special section on the development of concepts. The journal is now open access through Annual Reviews' Subscribe to Open program, with articles published under a CC BY license.