Manon Azaïs, Eric Agius, Stéphane Blanco, Angie Molina, Fabienne Pituello, Jean-Marc Tregan, Anaïs Vallet, Jacques Gautrais
{"title":"Timing the spinal cord development with neural progenitor cells losing their proliferative capacity: a theoretical analysis.","authors":"Manon Azaïs, Eric Agius, Stéphane Blanco, Angie Molina, Fabienne Pituello, Jean-Marc Tregan, Anaïs Vallet, Jacques Gautrais","doi":"10.1186/s13064-019-0131-3","DOIUrl":null,"url":null,"abstract":"<p><p>In the developing neural tube in chicken and mammals, neural stem cells proliferate and differentiate according to a stereotyped spatiotemporal pattern. Several actors have been identified in the control of this process, from tissue-scale morphogens patterning to intrinsic determinants in neural progenitor cells. In a previous study (Bonnet et al. eLife 7, 2018), we have shown that the CDC25B phosphatase promotes the transition from proliferation to differentiation by stimulating neurogenic divisions, suggesting that it acts as a maturating factor for neural progenitors. In this previous study, we set up a mathematical model linking fixed progenitor modes of division to the dynamics of progenitors and differentiated populations. Here, we extend this model over time to propose a complete dynamical picture of this process. We start from the standard paradigm that progenitors are homogeneous and can perform any type of divisions (proliferative division yielding two progenitors, asymmetric neurogenic divisions yielding one progenitor and one neuron, and terminal symmetric divisions yielding two neurons). We calibrate this model using data published by Saade et al. (Cell Reports 4, 2013) about mode of divisions and population dynamics of progenitors/neurons at different developmental stages. Next, we explore the scenarios in which the progenitor population is actually split into two different pools, one of which is composed of cells that have lost the capacity to perform proliferative divisions. The scenario in which asymmetric neurogenic division would induce such a loss of proliferative capacity appears very relevant.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"14 1","pages":"7"},"PeriodicalIF":4.0000,"publicationDate":"2019-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-019-0131-3","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13064-019-0131-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
In the developing neural tube in chicken and mammals, neural stem cells proliferate and differentiate according to a stereotyped spatiotemporal pattern. Several actors have been identified in the control of this process, from tissue-scale morphogens patterning to intrinsic determinants in neural progenitor cells. In a previous study (Bonnet et al. eLife 7, 2018), we have shown that the CDC25B phosphatase promotes the transition from proliferation to differentiation by stimulating neurogenic divisions, suggesting that it acts as a maturating factor for neural progenitors. In this previous study, we set up a mathematical model linking fixed progenitor modes of division to the dynamics of progenitors and differentiated populations. Here, we extend this model over time to propose a complete dynamical picture of this process. We start from the standard paradigm that progenitors are homogeneous and can perform any type of divisions (proliferative division yielding two progenitors, asymmetric neurogenic divisions yielding one progenitor and one neuron, and terminal symmetric divisions yielding two neurons). We calibrate this model using data published by Saade et al. (Cell Reports 4, 2013) about mode of divisions and population dynamics of progenitors/neurons at different developmental stages. Next, we explore the scenarios in which the progenitor population is actually split into two different pools, one of which is composed of cells that have lost the capacity to perform proliferative divisions. The scenario in which asymmetric neurogenic division would induce such a loss of proliferative capacity appears very relevant.
期刊介绍:
Neural Development is a peer-reviewed open access, online journal, which features studies that use molecular, cellular, physiological or behavioral methods to provide novel insights into the mechanisms that underlie the formation of the nervous system.
Neural Development aims to discover how the nervous system arises and acquires the abilities to sense the world and control adaptive motor output. The field includes analysis of how progenitor cells form a nervous system during embryogenesis, and how the initially formed neural circuits are shaped by experience during early postnatal life. Some studies use well-established, genetically accessible model systems, but valuable insights are also obtained from less traditional models that provide behavioral or evolutionary insights.