α-C–H functionalization of glycine derivatives under mechanochemical accelerated aging en route the synthesis of 1,4-dihydropyridines and α-substituted glycine esters†
Keyu Xiang, Ping Ying, Tao Ying, Weike Su and Jingbo Yu
{"title":"α-C–H functionalization of glycine derivatives under mechanochemical accelerated aging en route the synthesis of 1,4-dihydropyridines and α-substituted glycine esters†","authors":"Keyu Xiang, Ping Ying, Tao Ying, Weike Su and Jingbo Yu","doi":"10.1039/D3GC00538K","DOIUrl":null,"url":null,"abstract":"<p >The emergence of accelerated aging reaction provided a safer, cleaner, and more sustainable technology for material manufacturing and biomass treatment but still underexploited in organic synthesis and medicinal chemistry. We report the first mechanochemical accelerated aging strategy for solvent-minimal (cascade) cross dehydrogenative coupling (CDC) reactions between glycine esters/amides and a range of nucleophiles, which features clean and convenient setup, ambient temperature, atmospheric oxidation, and feasibility, for multigram-scale synthesis. By virtue of these facts, the present method provided an expedient and sustainable alternative to synthesize biologically important α-glycine derivatives and functionalized 1,4-dihydropyridines including the precursor of the antioxidant AV-154 and calcium channel blocker analogs. Mechanistically, a pre-grinding of the reactants and silica gel/NaCl facilitated spontaneous oxidation of glycine esters/amides under open air without continuous energy input followed by a coupling reaction (and sequential transformations). Multiform green metrics calculation demonstrates that the current accelerated aging protocol meets many of the principles of green chemistry such as waste prevention, high atom economy, unnecessary solvent, and good energy efficiency.</p>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":" 7","pages":" 2853-2862"},"PeriodicalIF":9.3000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/gc/d3gc00538k","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of accelerated aging reaction provided a safer, cleaner, and more sustainable technology for material manufacturing and biomass treatment but still underexploited in organic synthesis and medicinal chemistry. We report the first mechanochemical accelerated aging strategy for solvent-minimal (cascade) cross dehydrogenative coupling (CDC) reactions between glycine esters/amides and a range of nucleophiles, which features clean and convenient setup, ambient temperature, atmospheric oxidation, and feasibility, for multigram-scale synthesis. By virtue of these facts, the present method provided an expedient and sustainable alternative to synthesize biologically important α-glycine derivatives and functionalized 1,4-dihydropyridines including the precursor of the antioxidant AV-154 and calcium channel blocker analogs. Mechanistically, a pre-grinding of the reactants and silica gel/NaCl facilitated spontaneous oxidation of glycine esters/amides under open air without continuous energy input followed by a coupling reaction (and sequential transformations). Multiform green metrics calculation demonstrates that the current accelerated aging protocol meets many of the principles of green chemistry such as waste prevention, high atom economy, unnecessary solvent, and good energy efficiency.
期刊介绍:
Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.