In Situ Forming Depot as Sustained-Release Drug Delivery Systems.

IF 3 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Navjot Kanwar, Vivek Ranjan Sinha
{"title":"In Situ Forming Depot as Sustained-Release Drug Delivery Systems.","authors":"Navjot Kanwar,&nbsp;Vivek Ranjan Sinha","doi":"10.1615/CritRevTherDrugCarrierSyst.2018025013","DOIUrl":null,"url":null,"abstract":"<p><p>In situ forming systems can serve as promising alternative to existing long acting injectables like disperse systems and microspheres, owing to their biocompatibility, stability, ease of administration and scale up. Microspheres based on long-acting parenteral systems pose challenges in scaling up and process changes with the drug and polymer selected. In situ gelling systems are having low viscosity which is very conducive during various manufacturing unit operations and passing the formulation through hypodermic needle with lower applied pressure. Different mechanisms such as physical or physiological stimuli and cross linking reactions are involved in the gelling of in situ forming systems at the site of injection. Drug release from in situ forming systems can be altered according to the need by using different polymers, lipids and fatty acids. In situ forming systems can be evaluated by sol-gel transition time, temperature and pH, rheology, gel strength, texture analysis, syringeability and injectability. The present paper is an overview of the various in situ gelling polymers and their application in the preparation of depot formulations. Numerous products based on in situ forming systems such as Eligard®, Atridox® are available in market.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":"36 2","pages":"93-136"},"PeriodicalIF":3.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1615/CritRevTherDrugCarrierSyst.2018025013","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2018025013","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 27

Abstract

In situ forming systems can serve as promising alternative to existing long acting injectables like disperse systems and microspheres, owing to their biocompatibility, stability, ease of administration and scale up. Microspheres based on long-acting parenteral systems pose challenges in scaling up and process changes with the drug and polymer selected. In situ gelling systems are having low viscosity which is very conducive during various manufacturing unit operations and passing the formulation through hypodermic needle with lower applied pressure. Different mechanisms such as physical or physiological stimuli and cross linking reactions are involved in the gelling of in situ forming systems at the site of injection. Drug release from in situ forming systems can be altered according to the need by using different polymers, lipids and fatty acids. In situ forming systems can be evaluated by sol-gel transition time, temperature and pH, rheology, gel strength, texture analysis, syringeability and injectability. The present paper is an overview of the various in situ gelling polymers and their application in the preparation of depot formulations. Numerous products based on in situ forming systems such as Eligard®, Atridox® are available in market.

原位成形库作为缓释给药系统。
由于原位成型系统具有生物相容性、稳定性、易于管理和规模化,因此可以作为现有长效注射剂(如分散系统和微球)的有希望的替代品。基于长效肠外系统的微球在扩大规模和随着药物和聚合物的选择而改变工艺方面提出了挑战。原位胶凝系统具有低粘度,这在各种制造单元操作中非常有利,并且以较低的施加压力将配方通过皮下注射针。不同的机制,如物理或生理刺激和交联反应参与了原位成形系统在注射部位的胶凝。原位成形系统的药物释放可以根据需要通过使用不同的聚合物、脂类和脂肪酸来改变。可以通过溶胶-凝胶转变时间、温度和pH、流变性、凝胶强度、结构分析、注射性和注射性来评价原位成型体系。本文综述了各种原位胶凝聚合物及其在仓库配方制备中的应用。市场上有许多基于现场成形系统的产品,如Eligard®,Atridox®。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
18.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields. Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信