{"title":"Connexin-43 Enhances the Redesigned Cytosine Deaminase Activity for Suicide Gene Therapy in Human Breast Cancer Cells.","authors":"Asif Raza, Siddhartha Sankar Ghosh","doi":"10.1177/1178626418818182","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong><i>Escherichia coli</i> cytosine deaminase (CD) converts 5-fluorocytosine (5-FC), a prodrug, into 5-fluorouracil (5-FU), a chemotherapeutic drug. However, the poor binding affinity of CD towards 5-FC as compared to the natural substrate cytosine, limits its application towards a successful suicide gene therapy. Although F186W mutant was developed to enhance the effect of wild-type CD, still scope for its improvement remains to further minimize the dose-dependent cytotoxicity of the drugs. Hence, in this study, we employ the anti-tumour attribute of the gap junction forming protein connexin-43 (Cx43) in conjunction with CD or F186W mutant.</p><p><strong>Methods: </strong>Lipofectamine was used to co-transfect CD/F186W-pVITRO2 and Cx43-pEGFP-N1 plasmids construct into MCF-7 cells. Comparative analysis of cell viability was observed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) and trypan blue-based assays. To further confirm the mode of cell death was apoptosis, propidium iodide and annexin V/7-aminoactinomycin D (7-AAD)-based apoptosis assays were performed.</p><p><strong>Results: </strong>Semi-quantitative polymerase chain reaction (PCR) confirmed the expression of both Cx43 and CD/F186W genes after transfection. Furthermore, cell viability assays revealed the enhanced activity of F186W-Cx43 compared with CD-Cx43 and F186W alone. The trend of the reduction in cell viability was also reflected in the flow cytometry-based apoptosis analyses. Overall, F186W-Cx43 combination demonstrated its superiority over the CD-Cx43 and F186W mutant alone.</p><p><strong>Conclusions: </strong>The enhanced cytotoxic activity of F186W mutant was further amplified by gap junction protein Cx43.</p>","PeriodicalId":8791,"journal":{"name":"Biochemistry Insights","volume":"12 ","pages":"1178626418818182"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1178626418818182","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1178626418818182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Background: Escherichia coli cytosine deaminase (CD) converts 5-fluorocytosine (5-FC), a prodrug, into 5-fluorouracil (5-FU), a chemotherapeutic drug. However, the poor binding affinity of CD towards 5-FC as compared to the natural substrate cytosine, limits its application towards a successful suicide gene therapy. Although F186W mutant was developed to enhance the effect of wild-type CD, still scope for its improvement remains to further minimize the dose-dependent cytotoxicity of the drugs. Hence, in this study, we employ the anti-tumour attribute of the gap junction forming protein connexin-43 (Cx43) in conjunction with CD or F186W mutant.
Methods: Lipofectamine was used to co-transfect CD/F186W-pVITRO2 and Cx43-pEGFP-N1 plasmids construct into MCF-7 cells. Comparative analysis of cell viability was observed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) and trypan blue-based assays. To further confirm the mode of cell death was apoptosis, propidium iodide and annexin V/7-aminoactinomycin D (7-AAD)-based apoptosis assays were performed.
Results: Semi-quantitative polymerase chain reaction (PCR) confirmed the expression of both Cx43 and CD/F186W genes after transfection. Furthermore, cell viability assays revealed the enhanced activity of F186W-Cx43 compared with CD-Cx43 and F186W alone. The trend of the reduction in cell viability was also reflected in the flow cytometry-based apoptosis analyses. Overall, F186W-Cx43 combination demonstrated its superiority over the CD-Cx43 and F186W mutant alone.
Conclusions: The enhanced cytotoxic activity of F186W mutant was further amplified by gap junction protein Cx43.