In silico analysis of squalene synthase in Fabaceae family using bioinformatics tools

IF 3.5 Q3 Biochemistry, Genetics and Molecular Biology
Zahra Aminfar , Masoud Tohidfar
{"title":"In silico analysis of squalene synthase in Fabaceae family using bioinformatics tools","authors":"Zahra Aminfar ,&nbsp;Masoud Tohidfar","doi":"10.1016/j.jgeb.2018.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>Triterpenoid saponins are a diverse group of bioactive compounds, which are used for possessing of many biomedical and pharmaceutical products. Generally, squalene synthase (SQS) is defined as an emerging and essential branch point enzyme far from the major pathway of isoprenoids biosynthetic and a latent adjusting point, which manages carbon flux into triterpenes biosynthesis and sterols. The present study deals with the detailed characterization of SQS by bioinformatics approaches to evaluate physicochemical properties, structural characteristics including secondary and 3D structure prediction and functional analysis from eight plants related to Fabaceae family and <em>Arabidopsis thaliana</em>. Bioinformatics analysis revealed that SQS proteins have two transmembrane regions in the C-terminal. The predicted motifs were used to design universal degenerate primers for PCR analysis and other molecular applications. Phylogenetic analysis showed conserved regions at different stretches with maximum homology in amino acid residues within all SQSs. The secondary structure prediction results showed that the amino acid sequence of all squalene synthases had α helix and random coil as the main components. The reliability of the received model was confirmed using the ProSA and RAMPAGE programs. Determining of active site by CASTp proposes the possibility of using this protein as probable medication target. The findings of the present study may be useful for further assessments on characterization and cloning of squalene synthase.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jgeb.2018.06.001","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X18300611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 11

Abstract

Triterpenoid saponins are a diverse group of bioactive compounds, which are used for possessing of many biomedical and pharmaceutical products. Generally, squalene synthase (SQS) is defined as an emerging and essential branch point enzyme far from the major pathway of isoprenoids biosynthetic and a latent adjusting point, which manages carbon flux into triterpenes biosynthesis and sterols. The present study deals with the detailed characterization of SQS by bioinformatics approaches to evaluate physicochemical properties, structural characteristics including secondary and 3D structure prediction and functional analysis from eight plants related to Fabaceae family and Arabidopsis thaliana. Bioinformatics analysis revealed that SQS proteins have two transmembrane regions in the C-terminal. The predicted motifs were used to design universal degenerate primers for PCR analysis and other molecular applications. Phylogenetic analysis showed conserved regions at different stretches with maximum homology in amino acid residues within all SQSs. The secondary structure prediction results showed that the amino acid sequence of all squalene synthases had α helix and random coil as the main components. The reliability of the received model was confirmed using the ProSA and RAMPAGE programs. Determining of active site by CASTp proposes the possibility of using this protein as probable medication target. The findings of the present study may be useful for further assessments on characterization and cloning of squalene synthase.

Abstract Image

Abstract Image

Abstract Image

豆科植物角鲨烯合成酶的生物信息学分析
三萜皂苷是一类具有多种生物活性的化合物,被广泛应用于生物医药产品中。鲨烯合成酶(SQS)通常被定义为远离类异戊二烯生物合成主要途径的一个新兴的、必需的分支点酶,是一个潜在的调节点,它管理着碳通量进入三萜生物合成和甾醇。本研究利用生物信息学方法对8种Fabaceae和拟南芥(Arabidopsis thaliana)植物的SQS进行了详细的表征,以评估其理化性质、结构特征,包括二级和三维结构预测以及功能分析。生物信息学分析表明,SQS蛋白在c端有两个跨膜区。预测基序用于设计通用简并引物,用于PCR分析和其他分子应用。系统发育分析表明,所有序列中氨基酸残基同源性最大的保守区域在不同的延伸处。二级结构预测结果表明,所有角鲨烯合酶的氨基酸序列均以α螺旋和随机螺旋为主要成分。使用ProSA和RAMPAGE程序确认接收到的模型的可靠性。通过CASTp测定活性位点,提出了利用该蛋白作为可能的药物靶点的可能性。本研究结果对角鲨烯合成酶的鉴定和克隆具有一定的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Genetic Engineering and Biotechnology
Journal of Genetic Engineering and Biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.70
自引率
5.70%
发文量
159
审稿时长
16 weeks
期刊介绍: Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信