Edy Setiti Wida Utami , Sucipto Hariyanto , Yosephine Sri Wulan Manuhara
{"title":"Agrobacterium tumefaciens-mediated transformation of Dendrobium lasianthera J.J.Sm: An important medicinal orchid","authors":"Edy Setiti Wida Utami , Sucipto Hariyanto , Yosephine Sri Wulan Manuhara","doi":"10.1016/j.jgeb.2018.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>A protocol for genetic transformation mediated by <em>Agrobacterium tumefaciens</em> and production of transgenic <em>Dendrobium lasianthera</em> has been developed for the first time. The 8-week-old protocorm explants were used as target of transformation with <em>Agrobacterium tumefaciens</em> strain LBA4404 carrying plasmid pG35SKNAT1. Several parameters such as infection period, <em>Agrobacterium</em> density, concentration of acetosyringone, and co-cultivation period were evaluated for the transformation efficiency. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's Multiple Range Test (DMRT) with p < 0.05. Subsequently, KNAT1 gene expression was confirmed by polymerase chain reaction (PCR) analysis. The highest efficiency of transformation (70%) obtained from protocorm explants infected with <em>Agrobacterium</em> culture was at the OD<sub>600</sub> concentration of 0.6 for 30 min, and co-cultivated with acetosyringone 100 µM for 5 days. The results of confirmation by PCR analysis show that the KNAT1 gene has been integrated and expressed in the genome of <em>Dendrobium lasianthera</em> transgenic.</p></div>","PeriodicalId":53463,"journal":{"name":"Journal of Genetic Engineering and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jgeb.2018.02.002","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetic Engineering and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687157X18300088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 8
Abstract
A protocol for genetic transformation mediated by Agrobacterium tumefaciens and production of transgenic Dendrobium lasianthera has been developed for the first time. The 8-week-old protocorm explants were used as target of transformation with Agrobacterium tumefaciens strain LBA4404 carrying plasmid pG35SKNAT1. Several parameters such as infection period, Agrobacterium density, concentration of acetosyringone, and co-cultivation period were evaluated for the transformation efficiency. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's Multiple Range Test (DMRT) with p < 0.05. Subsequently, KNAT1 gene expression was confirmed by polymerase chain reaction (PCR) analysis. The highest efficiency of transformation (70%) obtained from protocorm explants infected with Agrobacterium culture was at the OD600 concentration of 0.6 for 30 min, and co-cultivated with acetosyringone 100 µM for 5 days. The results of confirmation by PCR analysis show that the KNAT1 gene has been integrated and expressed in the genome of Dendrobium lasianthera transgenic.
期刊介绍:
Journal of genetic engineering and biotechnology is devoted to rapid publication of full-length research papers that leads to significant contribution in advancing knowledge in genetic engineering and biotechnology and provide novel perspectives in this research area. JGEB includes all major themes related to genetic engineering and recombinant DNA. The area of interest of JGEB includes but not restricted to: •Plant genetics •Animal genetics •Bacterial enzymes •Agricultural Biotechnology, •Biochemistry, •Biophysics, •Bioinformatics, •Environmental Biotechnology, •Industrial Biotechnology, •Microbial biotechnology, •Medical Biotechnology, •Bioenergy, Biosafety, •Biosecurity, •Bioethics, •GMOS, •Genomic, •Proteomic JGEB accepts