Catarina Catela, Edgar Correa, Kailong Wen, Jihad Aburas, Laura Croci, G Giacomo Consalez, Paschalis Kratsios
{"title":"An ancient role for collier/Olf/Ebf (COE)-type transcription factors in axial motor neuron development.","authors":"Catarina Catela, Edgar Correa, Kailong Wen, Jihad Aburas, Laura Croci, G Giacomo Consalez, Paschalis Kratsios","doi":"10.1186/s13064-018-0125-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mammalian motor circuits display remarkable cellular diversity with hundreds of motor neuron (MN) subtypes innervating hundreds of different muscles. Extensive research on limb muscle-innervating MNs has begun to elucidate the genetic programs that control animal locomotion. In striking contrast, the molecular mechanisms underlying the development of axial muscle-innervating MNs, which control breathing and spinal alignment, are poorly studied.</p><p><strong>Methods: </strong>Our previous studies indicated that the function of the Collier/Olf/Ebf (COE) family of transcription factors (TFs) in axial MN development may be conserved from nematodes to simple chordates. Here, we examine the expression pattern of all four mouse COE family members (mEbf1-mEbf4) in spinal MNs and employ genetic approaches in both nematodes and mice to investigate their function in axial MN development.</p><p><strong>Results: </strong>We report that mEbf1 and mEbf2 are expressed in distinct MN clusters (termed \"columns\") that innervate different axial muscles. Mouse Ebf1 is expressed in MNs of the hypaxial motor column (HMC), which is necessary for breathing, while mEbf2 is expressed in MNs of the medial motor column (MMC) that control spinal alignment. Our characterization of Ebf2 knock-out mice uncovered a requirement for Ebf2 in the differentiation program of a subset of MMC MNs and revealed for the first time molecular diversity within MMC neurons. Intriguingly, transgenic expression of mEbf1 or mEbf2 can rescue axial MN differentiation and locomotory defects in nematodes (Caenorhabditis elegans) lacking unc-3, the sole C. elegans ortholog of the COE family, suggesting functional conservation among mEbf1, mEbf2 and nematode UNC-3.</p><p><strong>Conclusions: </strong>These findings support the hypothesis that genetic programs controlling axial MN development are deeply conserved across species, and further advance our understanding of such programs by revealing an essential role for Ebf2 in mouse axial MNs. Because human mutations in COE orthologs lead to neurodevelopmental disorders characterized by motor developmental delay, our findings may advance our understanding of these human conditions.</p>","PeriodicalId":49764,"journal":{"name":"Neural Development","volume":"14 1","pages":"2"},"PeriodicalIF":4.0000,"publicationDate":"2019-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13064-018-0125-6","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13064-018-0125-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 17
Abstract
Background: Mammalian motor circuits display remarkable cellular diversity with hundreds of motor neuron (MN) subtypes innervating hundreds of different muscles. Extensive research on limb muscle-innervating MNs has begun to elucidate the genetic programs that control animal locomotion. In striking contrast, the molecular mechanisms underlying the development of axial muscle-innervating MNs, which control breathing and spinal alignment, are poorly studied.
Methods: Our previous studies indicated that the function of the Collier/Olf/Ebf (COE) family of transcription factors (TFs) in axial MN development may be conserved from nematodes to simple chordates. Here, we examine the expression pattern of all four mouse COE family members (mEbf1-mEbf4) in spinal MNs and employ genetic approaches in both nematodes and mice to investigate their function in axial MN development.
Results: We report that mEbf1 and mEbf2 are expressed in distinct MN clusters (termed "columns") that innervate different axial muscles. Mouse Ebf1 is expressed in MNs of the hypaxial motor column (HMC), which is necessary for breathing, while mEbf2 is expressed in MNs of the medial motor column (MMC) that control spinal alignment. Our characterization of Ebf2 knock-out mice uncovered a requirement for Ebf2 in the differentiation program of a subset of MMC MNs and revealed for the first time molecular diversity within MMC neurons. Intriguingly, transgenic expression of mEbf1 or mEbf2 can rescue axial MN differentiation and locomotory defects in nematodes (Caenorhabditis elegans) lacking unc-3, the sole C. elegans ortholog of the COE family, suggesting functional conservation among mEbf1, mEbf2 and nematode UNC-3.
Conclusions: These findings support the hypothesis that genetic programs controlling axial MN development are deeply conserved across species, and further advance our understanding of such programs by revealing an essential role for Ebf2 in mouse axial MNs. Because human mutations in COE orthologs lead to neurodevelopmental disorders characterized by motor developmental delay, our findings may advance our understanding of these human conditions.
期刊介绍:
Neural Development is a peer-reviewed open access, online journal, which features studies that use molecular, cellular, physiological or behavioral methods to provide novel insights into the mechanisms that underlie the formation of the nervous system.
Neural Development aims to discover how the nervous system arises and acquires the abilities to sense the world and control adaptive motor output. The field includes analysis of how progenitor cells form a nervous system during embryogenesis, and how the initially formed neural circuits are shaped by experience during early postnatal life. Some studies use well-established, genetically accessible model systems, but valuable insights are also obtained from less traditional models that provide behavioral or evolutionary insights.