Noise in bacterial gene expression.

IF 4.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biochemical Society transactions Pub Date : 2019-02-28 Epub Date: 2018-12-21 DOI:10.1042/BST20180500
Christoph Engl
{"title":"Noise in bacterial gene expression.","authors":"Christoph Engl","doi":"10.1042/BST20180500","DOIUrl":null,"url":null,"abstract":"<p><p>The expression level of a gene can fluctuate significantly between individuals within a population of genetically identical cells. The resultant phenotypic heterogeneity could be exploited by bacteria to adapt to changing environmental conditions. Noise is hence a genome-wide phenomenon that arises from the stochastic nature of the biochemical reactions that take place during gene expression and the relatively low abundance of the molecules involved. The production of mRNA and proteins therefore occurs in bursts, with alternating episodes of high and low activity during transcription and translation. Single-cell and single-molecule studies demonstrated that noise within gene expression is influenced by a combination of both intrinsic and extrinsic factors. However, our mechanistic understanding of this process at the molecular level is still rather limited. Further investigation is necessary that takes into account the detailed knowledge of gene regulation gained from biochemical studies.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":"47 1","pages":"209-217"},"PeriodicalIF":4.3000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1042/BST20180500","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20180500","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/12/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 21

Abstract

The expression level of a gene can fluctuate significantly between individuals within a population of genetically identical cells. The resultant phenotypic heterogeneity could be exploited by bacteria to adapt to changing environmental conditions. Noise is hence a genome-wide phenomenon that arises from the stochastic nature of the biochemical reactions that take place during gene expression and the relatively low abundance of the molecules involved. The production of mRNA and proteins therefore occurs in bursts, with alternating episodes of high and low activity during transcription and translation. Single-cell and single-molecule studies demonstrated that noise within gene expression is influenced by a combination of both intrinsic and extrinsic factors. However, our mechanistic understanding of this process at the molecular level is still rather limited. Further investigation is necessary that takes into account the detailed knowledge of gene regulation gained from biochemical studies.

细菌基因表达中的噪声。
基因的表达水平可以在基因相同的细胞群体中个体之间显著波动。由此产生的表型异质性可以被细菌利用来适应不断变化的环境条件。因此,噪声是一种全基因组现象,它是由基因表达过程中发生的生化反应的随机性和相关分子的相对低丰度引起的。因此,mRNA和蛋白质的产生以爆发的方式发生,在转录和翻译过程中交替出现高活性和低活性。单细胞和单分子研究表明,基因表达中的噪声受到内在和外在因素的共同影响。然而,我们在分子水平上对这一过程的机理理解仍然相当有限。考虑到从生化研究中获得的基因调控的详细知识,进一步的调查是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Society transactions
Biochemical Society transactions 生物-生化与分子生物学
CiteScore
7.80
自引率
0.00%
发文量
351
审稿时长
3-6 weeks
期刊介绍: Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences. Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信